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ABSTRACT: The ability to combine information acquired at different
times to make novel inferences is a powerful function of episodic mem-
ory. One perspective suggests that by retrieving related knowledge during
new experiences, existing memories can be linked to the new, overlapping
information as it is encoded. The resulting memory traces would thus
incorporate content across event boundaries, representing important rela-
tionships among items encountered during separate experiences. While
prior work suggests that the hippocampus is involved in linking memories
experienced at different times, the involvement of specific subfields in
this process remains unknown. Using both univariate and multivariate
analyses of high-resolution functional magnetic resonance imaging (fMRI)
data, we localized this specialized encoding mechanism to human CA1.
Specifically, right CA1 responses during encoding of events that over-
lapped with prior experience predicted subsequent success on a test
requiring inferences about the relationships among events. Furthermore,
we employed neural pattern similarity analysis to show that patterns of
activation evoked during overlapping event encoding were later reinstated
in CA1 during successful inference. The reinstatement of CA1 patterns dur-
ing inference was specific to those trials that were performed quickly and
accurately, consistent with the notion that linking memories during learn-
ing facilitates novel judgments. These analyses provide converging evi-
dence that CA1 plays a unique role in encoding overlapping events and
highlight the dynamic interactions between hippocampal-mediated encod-
ing and retrieval processes. More broadly, our data reflect the adaptive
nature of episodic memories, in which representations are derived across
events in anticipation of future judgments. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Much memory research to date has focused on how our brains
encode, store, and recall memories for individual experiences. However,

in the real world, it is rare that an appropriate deci-
sion can be made on the basis of a single event mem-
ory alone; rather, the vast majority of decision and
action requires us to draw upon knowledge derived
across multiple events. For instance, we might infer a
relationship between two people not because we have
seen them together on a single occasion, but because
we have seen them both with a common third ele-
ment (e.g., their pet Poodle) on separate occasions.
Existing theories suggest that the ability to extract
new information from prior memories is supported
by the hippocampus via relational memory networks,
in which individual memory representations are con-
nected to one another in terms of the people, places,
and things they have in common (Eichenbaum,
1999). These networks could then enable the extrac-
tion of novel, never directly experienced information.
From such flexible behaviors, it is clear that episodic
memory serves a much more powerful function than
simple recordkeeping. Rather, research suggests that
our memories are prospectively oriented (Klein et al.,
2002; Buckner, 2010; Addis and Schacter, 2012),
formed in anticipation of future decisions in novel
situations.

Memory network formation may rely on dynamic
interactions that occur between old memories and
new information during encoding. It has been sug-
gested that related memories are retrieved during new
experiences containing overlapping content, which
may in turn impact the way the new information is
encoded (Bartlett, 1932; Tolman, 1948; O’Keefe and
Nadel, 1978; Cohen and Eichenbaum, 1995). Specifi-
cally, it has been proposed that encountering a new
event that shares content with a previous experience
would lead to the reactivation of the existing memory
through pattern completion mechanisms supported by
the hippocampus (McClelland et al., 1995; Eichen-
baum, 2000; O’Reilly and Rudy, 2001). This
learning-phase memory retrieval would allow new,
externally available information to be encoded in rela-
tion to these internally generated (i.e., reactivated)
memories, thereby facilitating subsequent inferences
about the relationships among memories.

Despite the everyday importance of behaviors like
inference, the underlying neural substrates are not well
understood. One open question is the role of specific
hippocampal subfields in encoding experiences contain-
ing elements that overlap with prior memories. The
hippocampus is a heterogeneous structure, with sub-
fields that differ in cellular organization, anatomical
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connectivity, and mnemonic functionality (Manns and Eichen-
baum, 2006). Despite this heterogeneity, the degree to which
specific hippocampal subfields contribute to encoding and
retrieval operations that support inference has not been studied
in either animals or humans. However, based on its hypothesized
function, we suggest that area CA1 might play a particularly
important role when experiencing events that overlap with prior
knowledge. While theoretical and computational models (Marr,
1971; McNaughton and Morris, 1987) attribute binding of ele-
ments within individual episodes to area CA3, CA1 may be
important for relating information across episodes. In particular,
CA1 is hypothesized to serve as a comparator, signaling when
new experiences deviate from memory-based expectations (Lis-
man and Grace, 2005; Chen et al., 2011; Duncan et al., 2012).
The detection of differences between reactivated memories and
current events may trigger a specialized encoding process, leading
to the formation of links between current experience and exist-
ing knowledge (Shohamy and Wagner, 2008; Wang and Morris,
2010; Van Kesteren et al., 2012). Consistent with this idea,
recent rodent work has demonstrated increases in CA1 activity
and plasticity in the presence of novel stimuli or familiar stimuli
in novel locations (Larkin et al., 2014). The authors of that
study propose that CA1 may signal the existence of novelty,
while at the same time increasing plasticity to allow prior mem-
ories to be updated with new information. Thus, the present
study aims to assess the idea that CA1 might play a unique role
in encoding new content that relates to existing memories.

We employed an associative inference task (Preston et al.,
2004; Zeithamova and Preston, 2010) in combination with
high-resolution functional magnetic resonance imaging (fMRI)
and neural pattern similarity analysis (NPSA; Kriegeskorte
et al., 2008). During study phases (Fig. 1a), participants were
first presented with a series of AB object pairs (e.g., clipboard-
truck) followed by the corresponding BC object pairs (e.g.,
truck-binoculars), where the B item (truck) was common to
both associations. After each study phase, participants com-
pleted a two-alternative forced choice test of both the directly
learned (AB, BC) and inference (AC; e.g., clipboard-binocu-
lars) associations (Fig. 1b). The goals of the present study were
to examine (1) how processes engaged during presentation of
the overlapping memories are predictive of subsequent infer-
ence; as well as (2) how encoding responses are reinstated dur-
ing successful inference judgments. Specifically, we addressed
the hypothesis that greater evidence for reinstatement of study
patterns during subsequent test would be associated with faster
and more accurate inferences (Fig. 2).

MATERIALS AND METHODS

Participants

Twenty-five right-handed volunteers from the Stanford Uni-
versity community participated in this study. Participants were
in good general health and were screened for contraindications

to MRI. Consent was obtained in accordance with an experi-
mental protocol approved by the Stanford University and The
University of Texas at Austin Institutional Review Boards. Par-
ticipants received monetary compensation for their involvement
in the study. Data from four participants were excluded for the
following reasons: failure to achieve above chance accuracy on
directly learned associations (three participants) and loss of ana-
tomical data (one participant). Data from the remaining 21
participants (12 females, ages 18–31, median 5 22 yr) were
included in all reported analyses.

Materials

Stimuli consisted of 360 grayscale images of common objects
organized into 144 overlapping pairs (72 AB pairs and 72 BC
pairs, forming a total of 72 ABC triads; Fig. 1a) and 72 non-
overlapping pairs (XY). Overlapping pairs were those for which
two objects (A and C) were each associated with a third over-
lapping object (B). Non-overlapping XY pairs consisted of two
unique objects not paired with any other items. To control for

FIGURE 1. Associative inference task. (a) Participants learned
overlapping pairs of objects during the study phases. AB (e.g.,
clipboard-truck) pairs were presented first. BC (e.g., truck-binocu-
lars) pairs were learned later and included familiar items from the
AB pairs (i.e., the truck in this example). (b) During test phases,
participants were presented with three objects. The top item served
as the cue; the bottom items were the two choices. A direct test
trial is shown on the left, in which the participant is required to
select truck when cued with clipboard. In the inference example
(right), the participant should choose the binoculars, as both the
clipboard and binoculars were paired with the truck during learn-
ing. For both direct and inference test trials, familiar items that
were members of a different triad from the same study scan served
as foils. Correct choices are circled for illustrative purposes only
(not shown to participants).
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the viewing order and pair type of the object stimuli, partici-
pants were assigned to one of six randomization groups.

Procedures

Participants completed an associative inference task (Preston
et al., 2004; Zeithamova and Preston, 2010) during fMRI
scanning. The task consisted of six alternating study and test
phases; both study and test phases were scanned. During study
phases, participants intentionally encoded object pairs (AB,
BC, XY) and single objects (X) (Fig. 1a). Participants saw each
pair only once during study, requiring rapid acquisition of
associative information. During the test phases, participants
were assessed on their memory for associations learned during
the immediately preceding study phase. Memory for both the
directly learned (AB, BC, XY) and inference (AC) associations
was tested using a two-alternative forced choice procedure
(Fig. 1b).

Study materials were presented in a mixed fMRI design in
which stimuli were blocked by type. Study scans consisted of
four cycles during which each of four condition blocks (AB,
BC, X, XY) was presented exactly once. Condition blocks
were presented such that AB blocks immediately preceded BC
blocks and X blocks immediately preceded XY blocks; the
order was counterbalanced both within and across participants.

Each condition block consisted of 12 study trials lasting a
total of 72 s. For each trial, stimuli (a pair of objects or a sin-
gle object) were presented on the screen for 3 s with a 1s
response period, during which time participants made a judg-
ment of learning (1, will remember; 2, may remember; 3, will
forget). These responses were collected solely to ensure partici-
pants’ attention during the study task and were not considered
in the data analysis. Trial onsets were jittered within each con-
dition block. Between study trials, participants completed a
variable number of 2 s baseline trials (range 0–3 baseline tri-
als) in which a single digit ranging from 1 to 8 was presented
on the screen; participants indicated with a button press
whether the digit was odd or even (Stark and Squire, 2001).
Baseline task blocks (12 s) were also presented at the begin-
ning and end of each study phase scan and in between each
condition block.

An event-related test scan occurred after each study scan.
Tested materials included directly learned object pairs (AB, BC,
XY) and inference associations (AC) that were viewed during
the immediately preceding study phase. Each test trial lasted
4 s during which time three objects were presented on the
screen (Fig. 1b): a cue object at the top (e.g., object A from
triad 1, denoted A1) with two options at the bottom (the cor-
rect stimulus from the same triad, denoted B1, and a studied
stimulus from a different triad, e.g., B2). Participants indicated

FIGURE 2. Schematic depiction and rationale of neural pat-
tern similarity analysis (NPSA). (a) Average patterns of activation
associated with specific trial types were extracted for each anatomi-
cal region of interest (ROI). Here we depict the cross-participant
analysis (see Neural Pattern Similarity Analysis section of Materials
and Methods), which was estimated irrespective of memory per-
formance. Trials were modeled according to event type (AB, BC
for study phase; AC for test phase) using a GLM. Parameter esti-
mates associated with conditions of interest were then extracted
for each voxel within the ROI (example ROI shown in yellow).
The intensity in each cell in the grayscale matrix schematic repre-
sents the parameter estimate for a single voxel in the ROI. The
similarity of two patterns was then determined by computing a

Pearson correlation between the two matrices. (b) Predictions for
NPSA when existing memories are retrieved and linked to current
experience during overlapping event encoding. Example AB study,
BC study, and inference test screens are shown; simplified hypo-
thetical mean patterns of activation associated with each trial type
are depicted next to the corresponding condition. As BC study tri-
als provide a unique opportunity to link prior memories with cur-
rent experience, we predicted greater reinstatement of BC than AB
study patterns during AC inference judgments. Reinstatement of
study patterns evoked during overlapping event encoding would
be reflected by a higher correlation between BC-AC study-test
(thick blue arrow) than between AB-AC study-test (thin green
arrow).
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which of these two choice objects was associated with the cue
object by pressing a button. For inference (AC) judgments,
participants were told that the relationship between the cue
(e.g., A1) and the correct choice (C1) was mediated through
their common association with a third item (B1). For both
direct and inference test trials, incorrect choices were familiar
objects from a different triad in the same study scan. The order
of test trials was pseudo-random such that the inference test
trial for a given triad was presented before the corresponding
direct test trials (i.e., A1C1 was tested prior to testing A1B1 and
B1C1) to prevent additional learning of the direct associations
during the test phases. Odd/even digit baseline trials (range 0–
5) were intermixed with test trials. For both study and test
phases, trial order was determined by a sequencing program to
optimize the efficiency of event-related fMRI design (Dale,
1999). Because study and test phases were presented in alterna-
tion, participants were aware during learning that they would
be tested on both direct and inference associations.

fMRI Data Acquisition and Preprocessing

Imaging data were acquired on a 3.0 T GE Signa MRI sys-
tem (GE Medical Systems). Functional images were acquired
using gradient echo spiral in/out pulse sequence (TR 5 2 s;
TE 5 30 ms; 2 shot; flip angle 5 61; 128 3 128 matrix; 2 3

2 3 2 mm voxels; 14 oblique axial slices oriented parallel to
the main axis of the hippocampus) (Glover and Law, 2001).
While the slices were prescribed to cover hippocampus proper
in all participants, we did not achieve full coverage of the para-
hippocampal gyrus in the majority of participants. Thus, the
analyses reported here are restricted to hippocampal subfields.
A T2-weighted inplane structural image was acquired in the
same prescription as the functional images (TR 5 3 s, TE 5 68
ms, 512 3 512 matrix, 0.43 3 0.43 mm in-plane resolution).
To delineate anatomical regions of interest, we also acquired a
high-resolution T2-weighted coronal structural image
(TR 5 3 s, TE 5 68 ms, 512 3 512 matrix, 0.43 3 0.43 mm
in-plane resolution, 30 3-mm thick slices). A T1-weighted 3D
SPGR structural volume (256 3 256 3 156 matrix, 0.86 3

0.86 3 1 mm3) was also collected to facilitate coregistration of
the inplane and coronal images. Foam padding was used to
minimize head motion.

To obtain a field map for correction of magnetic field hetero-
geneity, the first volume of each functional scan was collected
with an echo time 2 ms longer than all subsequent volumes.
For each slice, the map was calculated from the phase of the
first two time frames and applied as a first order correction dur-
ing reconstruction of the functional images. In this way, blur-
ring and geometric distortion were minimized on a per-slice
basis. In addition, correction for off-resonance due to breathing
was applied on a per-time-frame basis using phase navigation
(Pfeuffer et al., 2002). This initial volume was then discarded
as well as the following five volumes of each scan (for a total of
six discarded volumes, or 12 s) to allow for T1 stabilization.

Data were preprocessed and analyzed using SPM5 (Well-
come Department of Imaging Neuroscience, University College

London, London, UK) and custom Matlab (MathWorks, MA)
routines. Functional images were corrected to account for dif-
ferences in slice acquisition times by interpolating the voxel
time series using sinc interpolation and resampling the time
series using the middle slice as a reference point. Functional
images were then realigned to the first volume to correct for
motion. The inplane and SPGR images were registered to the
mean functional image created during the realignment step.
Timeseries data were high-pass filtered with a 128 s cutoff and
converted to percent signal.

Both neural pattern similarity and univariate analyses were
performed under the assumptions of the general linear model
(GLM). With the exception of group-level GLMs, all analyses
were done in the native space of each participant. For all GLMs
described below, regressor functions were constructed by model-
ing stimulus-related activation as a stick function convolved with
a canonical hemodynamic response function. Study and test
scans were modeled in separate GLMs for all analyses. X items
and XY pairs served no purpose for the current study and thus
were treated as events of no interest in all models. Additionally,
test trials for which no response was generated in the 4 s time
window were excluded from all performance-based analyses.

Several participants in the present study had a small mini-
mum number of trials per condition (e.g., due to few incorrect
responses; see below for trial counts for each analysis). To
ensure the present results were not substantially impacted by
inclusion of these participants, we repeated all analyses in a
subset of participants who had a minimum of eight trials per
condition of interest. Imposing this restriction did not signifi-
cantly change the pattern of the reported results; thus, the
remainder of the paper focuses on the full sample.

Univariate Analysis

Participant-level analysis

If existing knowledge is retrieved and linked to new experien-
ces during learning, it is necessarily the case that this must occur
during the second, overlapping associations (i.e., BC) in the
present paradigm. We hypothesized that memory integration
would be reflected in study-phase neural engagement that was
predictive of later inference during acquisition of the overlap-
ping—but not initially experienced—associations. Such a signa-
ture would reflect the unique opportunity afforded by BC study
trials to retrieve and link prior AB memories with new experi-
ence, thereby supporting later inference decisions. Thus, we
searched for regions whose encoding activation was more pre-
dictive of subsequent inference success during BC than AB
study trials to examine the role of hippocampal subfields in this
specialized encoding process (for a similar approach see Zeitha-
mova and Preston, 2010). AB and BC study trials were sorted
according to later success on the corresponding inference judg-
ment; study events were then modeled separately according to
trial type (AB, BC) and subsequent inference (inference correct,
inference incorrect) to generate one model per participant. This
procedure resulted in four regressors of interest (with
trial counts for each condition reported in parentheses):
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AB-inference correct (range: 28–64 trials; mean 6 SEM 5

42.19 6 2.42), AB-inference incorrect (4–37; 22.29 6 2.31),
BC-inference correct (28–64; 42.19 6 2.42) and BC-inference
incorrect (4–37; 22.29 6 2.31) study trials. We tested the
study trial type by inference interaction (BC>AB 3 inference
correct> inference incorrect) to isolate those regions whose acti-
vation was more predictive of subsequent inference during BC
than AB study trials.

Spatial normalization

A custom template was generated using Advanced Normaliza-
tion Tools (ANTS) (http://picsl.upenn.edu/software/ants/; Avants
et al., 2011). The T2-weighted inplane (i.e., oblique axial)
images from a subset of ten participants with canonical hippo-
campi were selected for template generation. After template gen-
eration, each participant’s inplane image was normalized to the
group template image as follows. To maximize alignment of hip-
pocampi across participants, a bilateral hippocampal region of
interest (ROI) was delineated by hand on each participant’s
inplane image as well as on the group template. Hippocampal
ROIs were used as labels to guide the spatial normalization from
each participant’s inplane image to the group inplane template.

Group-level analysis

The contrast images representing the study trial type by infer-
ence interaction from the participant-level GLMs were trans-
formed to template space for group-level univariate analyses.
Specifically, the transformations calculated for each participant’s
inplane image during the above-described spatial normalization
step were applied to each participant’s statistics image. The nor-
malized contrast images were then smoothed with a 2.5 mm
FWHM Gaussian kernel and submitted to a group-level GLM.
We anticipated more neural evidence for this specialized encod-
ing process among participants with good relative to poor infer-
ence ability. Thus, we were interested in those regions for which
the interaction term was significantly modulated by AC per-
formance across participants. An uncorrected voxelwise threshold
of P< 0.025 was applied to the group statistic image. Correc-
tion for multiple comparisons was performed using small vol-
ume correction to establish the cluster size corresponding to a
cluster-corrected threshold of P< 0.05. This calculation was car-
ried out using 3dClustSim, part of AFNI (Cox, 1996). The
3dClustSim uses a Monte Carlo simulation approach to take
into account the size and shape of the volume as well as the
smoothness of the data in determining a critical cluster size.
Simulations were performed separately for the right and left hip-
pocampal ROIs. Cluster sizes that occurred with a probability of
<0.05 across 5,000 simulations were considered statistically sig-
nificant. This procedure yielded a critical cluster size of 13 vox-
els for both the left and right hippocampus.

Neural Pattern Similarity Analysis (NPSA)

Numerous theories suggest that successful memory depends
on reinstating the activation patterns engaged during the initial

encoding experience (Tulving and Thomson, 1973; Alvarez and
Squire, 1994; McClelland et al., 1995; Wheeler et al., 2000;
Norman and O’Reilly, 2003; Moscovitch et al., 2005; Polyn
et al., 2005). We reasoned that in the present paradigm, the
degree of similarity between neural study and test patterns
should also relate to inference performance. We used NPSA to
quantify the degree of similarity between patterns of activation
evoked during study with those evoked during inferential test
trials for each of the five anatomical ROIs: anterior hippocam-
pus, CA1, a combined dentate gyrus/CA2,3 region (DG/CA2,3),
subiculum, and posterior hippocampus. ROIs were manually
segmented on the high-resolution T2-weighted coronal images
using established guidelines (Amaral and Insausti, 1990;
Insausti et al., 1998; Pruessner et al., 2000, 2002; Zeineh
et al., 2000, 2003; Preston et al., 2010), registered to the
SPGR and downsampled to functional resolution. Anterior and
posterior hippocampal ROIs were defined as those portions of
the hippocampus for which subfields could not be reliably
delineated. This analysis was performed in the native functional
space of each participant; no spatial normalization was per-
formed. After resampling to functional resolution, the number
of voxels in each hippocampal subfield ROI were as follows
(range, mean 6 SEM): anterior hippocampus: 205–544,
312.43 6 20.73; CA1: 159–393, 282.43 6 12.32; DG/CA2,3:
267–487, 362.86 6 13.60; subiculum: 148–330,
235.57 6 11.03; posterior hippocampus: 269–734, 495.676 25.19.
All voxels within a given anatomical region were included in the
analysis (i.e., no voxel selection was performed).

Three sets of GLMs were performed for the purposes of the
NPSA: one based on AC performance (performance-based
analysis), one based on response time (RT) on the correct AC
triads (RT-based analysis), and one based on event type, irre-
spective of performance (cross-participant analysis).

For all three analyses, voxelwise parameter estimates were
extracted for each participant, condition of interest, and region,
resulting in a vector of parameter estimates (one per voxel)
associated with each condition in each hippocampal subfield
ROI. The resulting study and test patterns were then used to
address our hypotheses about the nature of the neural patterns
reinstated during the inference test. In all analyses, Pearson cor-
relations were computed to assess the similarity between study
and inference test patterns. Correlation coefficients were then
Fisher transformed to more closely conform to the assumptions
of normality underlying standard statistical tests.

Performance-based NPSA

The performance-based analysis assessed how study-test pat-
tern similarity related to inference within each participant. One
perspective predicts that reinstatement of both AB and BC
encoding patterns will relate to inference performance, as mem-
ories for both associations are needed for successful inference.
On the other hand, learning of overlapping BC associations
provides a unique opportunity to link two related memories.
Thus, this perspective makes a different prediction: namely,
that test-phase reinstatement of overlapping BC study patterns
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should be more related to inference than should reinstatement
of initial AB study patterns (Fig. 2). We reasoned that for sub-
fields supporting this BC-specific learning mechanism, AC test
patterns should be more similar to the neural patterns evoked
during BC learning than to those evoked during the encoding
of initial AB associations (Fig. 2b, bidirectional arrows). In par-
ticular, we predicted that these subfields would show a study
trial type by inference success interaction in study-test pattern
similarity measures, such that BC-AC similarity would be more
predictive of performance within participant than would AB-
AC similarity. We also anticipated greater study-test pattern
similarity for BC than AB study trials, particularly for triads
on which the AC inference was correct. We limited this analy-
sis to those triads for which both corresponding direct associa-
tions (AB and BC) were correctly remembered, henceforth
referred to as “direct correct triads.” This was done to investi-
gate the processes involved specifically in inference, i.e., those
processes that go above and beyond individual pair encoding.

Study and test trials associated with direct correct triads
were split based on inference performance (AC correct or AC
incorrect). For the study-phase GLMs, regressors were con-
structed representing the following conditions of interest (all
limited to direct correct triads): AB trials for which AC was
later correct (range: 10–56 trials; mean 6 SEM 5 28 6 3.23
trials); AB trials for which AC was later incorrect (3–24;
11.33 6 1.15); BC trials for which AC was later correct (10–
56; 28 6 3.23); and BC trials for which AC was later incorrect
(3–24; 11.33 6 1.15). AB and BC study trials for which one
or both of the corresponding direct test trials were incorrect
(i.e., direct incorrect triads) were modeled as events of no
interest. For the test-phase GLMs, AC trials were first limited
to those for which the corresponding direct pairs were correct
and then further split based on AC performance. This proce-
dure resulted in two regressors of interest: AC correct test tri-
als and AC incorrect test trials, both limited to direct correct
triads. AB test trials, BC test trials, and AC trials correspond-
ing to direct incorrect triads were modeled as regressors of no
interest.

Voxelwise parameter estimates were extracted for each partic-
ipant, ROI and condition of interest. The following measures
of neural similarity between study and test patterns were then
calculated using Pearson correlation and Fisher transformed:
AB-AC study-test similarity for AC correct triads; AB-AC
study-test similarity for AC incorrect triads; BC-AC study-test
similarity for AC correct triads; BC-AC study-test similarity for
AC incorrect triads. We then performed a 2 3 2 repeated
measures analysis of variance of study-test pattern similarity
with study trial type (AB, BC) and inference success (AC cor-
rect, AC incorrect) as factors for each region. For regions dem-
onstrating significant interactions, follow-up comparisons were
performed using paired t-tests. Pattern similarity measures for
this analysis were also compared across ROIs using a 5 3 4
repeated measures ANOVA, with region (anterior hippocam-
pus, CA1, DG/CA2,3, subiculum, posterior hippocampus) and
condition (AB-AC correct, AB-AC incorrect, BC-AC correct,
BC-AC incorrect) as factors.

RT-based NPSA

We further hypothesized that in regions supporting subse-
quent inference through a specialized encoding process that
links related memories, reinstating study patterns at test would
be associated with faster inference judgments. Accordingly, we
constructed RT-based models to further interrogate those
regions showing a significant study trial type 3 inference suc-
cess interaction from the performance-based analysis described
above. We tested the hypothesis that the interaction between
study trial type and inference would be driven specifically by
the fast inferences. Moreover, as this encoding process is
engaged only during overlapping events, reinstatement of BC
study patterns in particular may be associated with a speed
advantage.

Regressors were constructed for these GLMs as described in
the performance-based analysis above with a single exception:
for each participant, study and test trials associated with AC
correct triads were further split by median RT on the critical
AC inference judgment. For the study scans, this resulted in
GLMs with the following four conditions of interest: AB study
trials for which AC was later correct, fast RT; AB study trials
for which AC was later correct, slow RT; BC study trials for
which AC was later correct, fast RT; BC study trials for which
AC was later correct, slow RT (all limited to direct correct tri-
ads). AB and BC study trials associated with AC incorrect tri-
ads were modeled as regressors of no interest, regardless of RT.
GLMs for the test phases included regressors for two condi-
tions of interest: AC correct test trials, fast RT; and AC correct
test trials, slow RT. Each condition of interest included an
average of 14 trials (range 5–28 trials per condition; mean-
6 SEM 5 13.86 6 1.59). AC incorrect trials were modeled
regardless of RT as a separate regressor of no interest. Addi-
tional regressors of no interest for study- and test-phase GLMs
were identical to those described in the performance-based
GLMs above.

After extracting patterns associated with each condition of
interest and ROI for every participant, we computed four pat-
tern similarity values: AB-AC study-test similarity for fast AC
correct triads; AB-AC study-test similarity for slow AC correct
triads; BC-AC study-test similarity for fast AC correct triads;
BC-AC study-test similarity for slow AC correct triads. Com-
parisons of interest were then performed using paired t-tests.

Cross-participant NPSA

The cross-participant NPSA was performed to explore indi-
vidual differences in the relationship between study-test pattern
similarity and inference ability. Events were modeled irrespec-
tive of performance to avoid introducing bias into the across-
participant correlations that could result from including vary-
ing numbers of trials across participants. Thus, all trials were
included in this analysis. AB study trials and BC study trials
were the conditions of interest for the study phase (modeled
irrespective of subsequent memory or inference; 72 trials per
condition). For the test scans, AC trials served as the single
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regressor of interest (72 trials); AB and BC test trials were
modeled as regressors of no interest.

We then compared the distributed activation patterns associ-
ated with AC test to those evoked during AB and BC encod-
ing. These calculations were performed separately for each
participant, resulting in AB-AC study-test and BC-AC study-
test similarity measures, computed irrespective of performance.
These study-test pattern similarity measures (Fisher’s z) were
then related to AC inference performance (proportion correct)
across participants using Pearson correlation. For those ROIs
demonstrating a significant relationship between pattern simi-
larity and AC performance for either AB or BC study trials,
AB-AC and BC-AC correlations with inference performance
were compared using the Hotelling–Williams test (Hotelling,
1940; Williams, 1959).

Study-Test Lag Calculations

In the present task, it is necessarily the case that BC study
pairs will be presented closer in time to the AC test trials than
will AB study pairs. To ensure that any observed differences
between BC and AB study-test pattern similarity were not sim-
ply due to differences in study-test temporal distance, we calcu-
lated mean lag in seconds between study and test trials separately
for each study trial type (AB, BC) and inference performance
(AC correct, AC incorrect) for each participant. As in the
performance-based pattern similarity analysis described above, we
limited our comparisons to direct correct triads. This resulted in
an average lag for AB-AC correct, AB-AC incorrect, BC-AC cor-
rect, and BC-AC incorrect trial types, which we compared using
both a 2 3 2 repeated measures ANOVA with study type and
inference performance as factors and follow-up paired t-tests.

RESULTS

Behavioral Results

Performance on both directly learned AB and BC pairs
(range: 63.8–97.1% correct; mean 6 SEM 5 79.2% 6 2.5%
correct; t(20) 5 11.49, P< 0.001) and inference associations
(AC; 43.1–93.8%; 65.2% 6 3.4%; t(20) 5 4.48, P 5 0.002)
was above chance. Memory for AB pairs was significantly
higher than memory for BC pairs (AB: 63.9–97.2%;
81.6% 6 2.5%; BC: 59.4–96.9%; 76.8% 6 2.7%; t(20) 5

4.42, P 5 0.003). There were large individual differences in
accuracy for inference judgments, which allowed us to deter-
mine how hippocampal activation related to inference perform-
ance across participants.

CA1 Activation During Learning of Overlapping
Events Predicts Subsequent Inference

We conducted a univariate analysis to investigate the rela-
tionship between hippocampal encoding activation and later
inference. Importantly, this specialized encoding process can

only occur in the present task during the second, overlapping
(i.e., BC) experiences, when current experience may be com-
pared with prior memories. The detection of novelty in the
environment then allows for the formation of links between
related memories. Thus, we reasoned that in subfields support-
ing this mechanism, trial-by-trial encoding responses should be
more predictive of subsequent inference during study of BC
than AB pairs (Zeithamova and Preston, 2010). To test the
hypothesis that CA1 supports this process, we interrogated the
study trial type by inference interaction (i.e., BC>AB 3 infer-
ence correct> inference incorrect) across the entire hippocam-
pus. We were specifically interested in those regions for which
the interaction term was modulated by AC performance. Sig-
nificant activation was observed exclusively in the right CA1

body (Fig. 3), consistent with this region’s hypothesized role in
detecting novelty and integrating current experience with prior
memories.

Neural Patterns During Inference Reflect
Reinstatement of Encoding Patterns in CA1

We next employed a more sensitive multivariate approach to
directly compare neural engagement during study and test.
Successful memory retrieval is thought to occur via reinstate-
ment of the neural patterns engaged during encoding (Tulving
and Thomson, 1973; Alvarez and Squire, 1994; McClelland
et al., 1995; Wheeler et al., 2000; Norman and O’Reilly,
2003; Moscovitch et al., 2005; Polyn et al., 2005). We pre-
dicted that reinstating study patterns might also relate to infer-
ence performance. Moreover, as BC study trials provide a
unique opportunity to link current information with existing

FIGURE 3. Results from univariate analysis demonstrating
relationship between CA1 processes during overlapping event
encoding and subsequent inference success. Right CA1 was the
only hippocampal region to demonstrate a signature consistent
with study-phase retrieval of prior memories in service of later
inference. This region showed greater subsequent inference effects
for BC relative to AB study trials as a function of AC perform-
ance. Inset, sagittal view showing location of cluster along
anterior-posterior extent of hippocampus. Significant activation
was restricted to the hippocampal body. Activation map has been
transformed to the space of a single participant’s T2 coronal image
for visualization purposes. Cluster is significant after correction
for multiple comparisons (voxel threshold: P < 0.025, uncorrected;
cluster size threshold: P < 0.05).
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memories, we hypothesized that this relationship may be spe-
cific to BC-AC study-test similarity for subfields supporting
this specialized encoding mechanism.

Performance-based analysis

To examine how patterns of hippocampal activation evoked
during AB and BC study were later reinstated during inference
judgments, we directly compared BC-AC and AB-AC study-
test pattern similarities as a function of inference success.
Because BC study trials present a unique opportunity to link
related memories, we hypothesized that the degree to which
BC study patterns were accessed during inference would be
related to performance, with greater BC-AC study-test similar-
ity for correct relative to incorrect inferences. We anticipated
that AB-AC study-test similarity would be less related to per-
formance. Moreover, we predicted that in cases of correct infer-
ence, AC test patterns would be more similar to BC study
than AB study patterns, reflecting reinstatement of encoding
patterns unique to memory integration.

Parameter estimates associated with each condition were
extracted for every voxel within the anatomically defined hip-
pocampal subfield ROIs, resulting in average patterns of dis-
tributed activation for AB study, BC study, and AC inference
trials, all for which AC was either correct or incorrect (for a
total of six conditions). Importantly, this analysis was limited
to only those triads for which the corresponding AB and BC
pairs were both remembered. Study-test pattern similarities
were then computed for each participant as a function of study
trial type and inference performance. Within each hippocampal
subfield, we tested the following predictions: (1) that there
would be a significant study trial type 3 inference interaction
and (2) that this interaction would be driven by greater BC-
AC than AB-AC study-test similarity when AC was correct.
Because these statistical tests were performed on all five hippo-
campal subfields, Bonferroni correction was performed to yield
a critical P value of 0.01 (corrected P< 0.05).

We observed the predicted study trial type 3 inference inter-
action exclusively in CA1 (F(1, 20) 5 12.26, P 5 0.002) (Fig.
4a). Moreover, a follow-up paired t-test revealed that these
effects were driven by significantly greater BC-AC than AB-AC
study-test pattern similarity for AC correct triads (t(20) 5 3.69,
P< 0.001). Pattern similarity also differentiated correct from
incorrect inference performance for BC (t(20) 5 3.33,
P 5 0.003) but not AB (t(20) 5 0.25, P 5 0.81) study trial
types. Main effects of study trial type (F(1, 20) 5 5.40,
P 5 0.03) and inference performance (F(1, 20) 5 4.43,
P 5 0.05) did not reach our corrected significance threshold in
this region.

Other ROIs did not show the same relationship between
study and test patterns as CA1 (all other study trial type 3

inference interactions F(1,20)< 1, P> 0.33; Figs. 5a–d, top
charts). Rather, in anterior hippocampus, subiculum, and pos-
terior hippocampus, we observed a main effect of inference
performance that survived Bonferroni correction, demonstrat-
ing greater study-test similarity for correct vs. incorrect trials

(all F(1, 20)> 12.87, P< 0.01). There were no significant
main effects of study trial type at our corrected threshold (all
F(1, 20)< 6.86, all P> 0.01).

To assess the differences in NPSA measures across subfields,
we performed a 5 3 4 repeated measures ANOVA with region
and condition (AB-AC correct, AB-AC incorrect, BC-AC cor-
rect, BC-AC incorrect) as factors. The region 3 condition inter-
action was significant (F(12,240) 5 4.80, P< 0.001), indicating
that the relationship between pattern similarity and subsequent
inference differed significantly across hippocampal subfields.

FIGURE 4. Results from multivariate neural pattern similarity
analysis demonstrating an encoding signature specific to overlap-
ping events in bilateral CA1. (a) Performance-based analysis.
Study-test pattern similarity limited to triads for which both direct
memory judgments (AB, BC) were correct. Trials were split based
on whether the corresponding inference (AC) judgment was later
correct (dark bars) or incorrect (light bars). AB-AC study-test pat-
tern similarity is shown in green; BC-AC study-test pattern simi-
larity is shown in blue. (b) RT-based analysis. Study-test pattern
similarity for direct correct and AC inference correct triads. Trials
were further split based on median reaction time into fast (dark
gray bars) and slow (light gray bars) inference judgments. Bars
depicting AB-AC study-test pattern similarity are outlined in
green; bars for BC-AC pattern similarity are outlined in blue. For
both (a) and (b), asterisks (*) denote significant follow-up paired
t-tests (P < 0.05); tensor product symbol (�) denotes significant
interaction (P < 0.01). Error bars denote across-participant SEM.
(c) Cross-participant analysis. Scatterplots depict continuous rela-
tionship between study-test pattern similarity (AB-AC study-test,
green; BC-AC study-test, blue) and inference performance. Best-fit
lines and statistics on plots were calculated using Pearson correla-
tion. Significant correlation at P < 0.005 denoted with bold type.
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RT-based analysis

We reasoned that test-phase reinstatement of study patterns
would be associated with facilitated inference. Here, we
hypothesized that specifically for fast inferences, AC test pat-
terns would more closely reflect BC than AB study patterns in
regions identified above as important for linking memories
during encoding. Moreover, we predicted that evidence for
reinstatement of hippocampal patterns evoked during BC study
would be greater for fast compared with slow inferences. In
this analysis, study and test trials associated with correct infer-
ence judgments were median split based on AC test RT. As in
the performance-based analysis described above, all study and
test trials were limited to only those triads for which AB and
BC were both correct. Parameter estimates associated with the

conditions of interest were extracted for every voxel in CA1 for
each participant. We then computed study-test pattern similar-
ity as described previously.

Consistent with our predictions, we observed greater BC-AC
than AB-AC study-test pattern similarity for fast (t(20) 5 2.58,
one-tailed P 5 0.009) but not slow (t(20) 5 0.68, P 5 0.50;
Fig. 4b) inferences. We also found higher BC-AC study-test
pattern similarity for fast relative to slow AC correct triads
(t(20) 5 2.13, one-tailed P 5 0.02). This difference was not

observed for AB study measures (t(20) 5 20.67, P 5 0.51).

Together, these results suggest that the observed study trial type

3 inference interaction was driven specifically by the fast infer-

ences, i.e., those likely facilitated by retrieval during learning.

Notably, this effect was found only for BC study trials.

FIGURE 5. Neural pattern similarity results in anterior hippo-
campus (a), DG/CA2,3 (b), subiculum (c), and posterior hippo-
campus (d). None of these regions showed evidence of a
specialized BC encoding mechanism. Data are presented as in Fig-
ures 4a, c. Top charts, performance based analysis. Significant
main effects of inference performance were observed in anterior

hippocampus, subiculum, and posterior hippocampus (all
P < 0.01; not marked on charts). Bottom scatterplots, cross-
participant analysis depicting continuous relationship between
study-test pattern similarity and inference performance. All corre-
lations were non-significant at the critical P threshold of 0.005.
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Cross-participant analysis

We performed the cross-participant NPSA to assess the rela-
tionship between study-test pattern similarity and individual
differences in inference performance. Parameter estimates were
extracted for each event type (AB study, BC study, AC infer-
ence test trials). We did not limit this analysis to particular tri-
als in the experiment (e.g., based on subsequent memory); all
study and test trials were included to avoid introducing bias
into the across-participant correlations. As we performed two
correlations in each of five hippocampal subfield ROIs, our
Bonferroni-corrected critical P value was 0.005.

We related BC-AC and AB-AC study-test pattern similarity
in hippocampal subfields to inference performance across par-
ticipants using Pearson correlation. We observed a significant
positive relationship between BC-AC study-test pattern similar-
ity and AC performance across participants in CA1 (r 5 0.62,
P 5 0.003; Fig. 4c). In contrast, there was no relationship
between AB-AC study-test pattern similarity and AC perform-
ance (r 5 0.03, P 5 0.89). A follow-up direct comparison
between these two correlation values revealed that they were
significantly different from one another (Hotelling-Williams
test; t(20) 5 3.73, P< 0.01). No significant relationship was
observed between study-test pattern similarity (BC-AC or AB-
AC) and inference performance in any other hippocampal sub-
field (all r< 0.43, P> 0.05) (Figs. 5a–d, bottom scatterplots).

Pattern Similarity Measures Do Not Parallel
Differences in Study-Test Lag

In the current task design, AB study trials are by definition
presented before BC study trials. Therefore, the temporal lag
between AB study trials and AC test trials is necessarily longer
than the lag between BC study trials and AC test trials. To
address the possibility that observed pattern similarity differences
might simply reflect discrepancies in intervening time between
study and test among our conditions of interest, we performed a
control study-test lag analysis. We calculated the average lag in
seconds between study and test trials for each participant and
condition included in the performance-based analysis (not con-
sidering the lag between the study run and the test run). The
results demonstrated that pattern similarity did not track with
this temporal distance measure. Specifically, despite the large dif-
ferences in pattern similarity as a function of performance (see
Figs. 4a and 5a–d, top charts), study-test lags did not differ
between AC correct and AC incorrect trials (F(1, 20) 5 0.61,
P 5 0.44). In contrast, large differences in average study-test lag
for BC and AB study trial types, dictated by our task design, did
not substantially impact our similarity measures in any subfield.

DISCUSSION

Prevailing views suggest that novel inference relies on the
ability to link distinct events across time (Cohen and Eichen-

baum, 1995). One process that might support this ability is
retrieval of related content during new learning. It has been
speculated that overlapping events elicit associative novelty sig-
nals (Shohamy and Wagner, 2008; Van Kesteren et al., 2012)
in CA1 (Wang and Morris, 2010; Duncan et al., 2012; Larkin
et al., 2014), which in turn enable new experiences to be
encoded into existing memory traces. Our data provide con-
verging evidence from both univariate and multivariate
approaches in support of this idea. We found evidence of a
specialized encoding mechanism engaged during learning of
overlapping events that supports later inference exclusively in
right CA1. Moreover, we used neural pattern similarity analysis
to demonstrate that CA1 study patterns were reinstated during
the inference test, particularly when inference judgments were
fast and accurate.

In the present paradigm, events that overlap with prior
memories (i.e., BC pairs) provide the unique opportunity to
combine current and previous experiences. Thus, we reasoned
that associative novelty signals would be possible only during
BC study trials. Moreover, such signatures may be associated
with superior inference performance on a trial-by-trial basis.
Our findings are consistent with the hypothesized role of CA1

in associative novelty detection. That is, CA1 was the only
region to demonstrate a greater subsequent inference effect dur-
ing encoding of new events that partially overlapped with prior
experiences (BC pairs) relative to the initially experienced
events themselves (AB pairs). We underscore that this signature
was observed only in the right hemisphere. Interestingly, this
converges with a previous standard-resolution study using this
paradigm (Zeithamova and Preston, 2010), in which this
unique encoding signature related to subsequent inference was
also specific to right hippocampus. Right-lateralized hippocam-
pal effects have also been reported in studies of prospection
(Addis et al., 2007, 2011; Weiler et al., 2010a,b; Martin et al.,
2011), which require similar cognitive processes—recombining
prior experiences—in service of imagining future scenarios.

Using neural pattern similarity analysis, we also showed that
CA1 is similarly engaged during overlapping event encoding
and successful subsequent inferences. This relationship held
across participants, with greater BC, but not AB, study-test
pattern similarity relating to superior inference performance.
Moreover, this was driven by those inference decisions made
quickly. Interestingly, these results were also found exclusively
in CA1, consistent with hypotheses regarding this area’s special
role in comparing prior memories with current experience.

On a mechanistic level, our neural pattern similarity analysis
findings might reflect test-phase reinstatement of memory rep-
resentations evoked during BC study trials (Zeithamova et al.,
2012a). In other words, A, B, and C information is repre-
sented in the brain during BC learning and later reactivated
during inference to answer the novel AC questions. This inter-
pretation comes with the caveat that the present findings do
not provide evidence for reinstatement of specific items at any
point in time, as all pattern similarity measures pooled across
multiple trials. Accordingly, a more likely interpretation of the
present findings is that similarity of BC encoding patterns with
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AC inference within CA1 reflects processes common to BC
study and AC test that do not occur during initial AB study.
Two likely candidates for such processes are retrieval (i.e.,
recalling task-relevant memories) and memory-based compari-
son (i.e., signaling deviations between stored memories and
current experience). Critically, if the present results do reflect
engagement of such processes, they are processes associated
with important behavioral benefits in inference speed and accu-
racy. Thus, regardless of whether our findings reflect reinstate-
ment of integrated memories or engagement of common
cognitive processes, these data demonstrate that CA1 plays a
unique and specialized role in encoding mechanisms that sup-
port the extension of memory beyond direct experience.

Existing research suggests that there are at least two general
mechanisms that may work in a complementary fashion to
support flexible memory behaviors such as inference (Zeitha-
mova et al., 2012b). First, information acquired at different
times may be combined to make novel inferences during the
inferential judgment itself. Under this hypothesized mecha-
nism, individual pattern-separated memory representations are
retrieved, manipulated and recombined to address novel ques-
tions. This intuitive explanation has received support from a
number of fMRI studies (Acuna et al., 2002; Heckers et al.,
2004; Preston et al., 2004; Zalesak and Heckers, 2009; Zeitha-
mova and Preston, 2010), generally on the basis of greater acti-
vation in medial temporal and prefrontal regions during
inferential judgments requiring consideration of multiple mem-
ories relative to memory judgments about single events. In the
present paradigm, this framework might suggest that AB mem-
ories are retrieved and separately strengthened during BC study,
thus leading to better inference.

However, recent work suggests that in some cases, effortful
retrieval-based inference can be bypassed through engagement
of a different mechanism that operates solely during encod-
ing. In this process, alternatively known as retrieval-mediated
learning (Holland, 1981; Hall, 1996; Iordanova et al., 2011;
Zeithamova et al., 2012a) or integrative encoding (Shohamy
and Wagner, 2008; Zeithamova and Preston, 2010), it has
been suggested that existing memory networks are updated
with new information while that new content is being experi-
enced. By initially encoding new information into existing
memories, this process is thought to result in hippocampal
memory traces that bridge temporally disparate events. Impor-
tantly, integrated memories code the relationships among ele-
ments in our environment—even those relationships we have
not experienced firsthand. Such integrated representations
would thus support inferences directly, requiring no further
recombination of knowledge during the inference judgment
itself. In the present study, an integrative encoding framework
would predict that retrieval of AB information during BC
study would lead to the formation of an integrated ABC
memory representation, thus enabling direct extraction of the
novel AC association.

Our data are compatible with both of these accounts. How-
ever, we argue that taken in the context of prior work, the
results presented here more likely reflect engagement of an

integrative encoding mechanism. Recent evidence implicates
hippocampal encoding processes in the integration of related
memories during learning (Shohamy and Wagner, 2008; Zei-
thamova and Preston, 2010; Zeithamova et al., 2012a). For
example, one study demonstrated that hippocampal activation
specifically during overlapping event encoding was predictive
of inference success (Zeithamova and Preston, 2010). More-
over, another study (Shohamy and Wagner, 2008) provided
behavioral evidence consistent with the idea that memories
are integrated during learning, enabling direct extraction of
inferential information at test. The authors showed that in
successful participants, inference judgments were just as fast
as retrieval of directly learned associations. These findings
suggest that inferential trials required minimal extra process-
ing during test, presumably because the link between indi-
rectly related items was already established during encoding.
While these studies suggest an integrative encoding process
supported by the hippocampus, no study to date has localized
this signature to a particular hippocampal subfield. Thus,
through the combined use of univariate and multivariate anal-
ysis approaches, the present work represents the first empirical
evidence highlighting the role of CA1 in memory integration
and inference.

Notably, our results are not readily explained by either mem-
ory strength or temporal context accounts. It is true that BC
study trials are closer in time to AC test trials than are AB
study trials, which might influence the neural pattern similarity
analysis in a number of ways. One possible consequence of this
design is that BC memories may be stronger (i.e., easier to
retrieve) because they were encoded more recently than were
AB memories. However, we found significantly better memory
for AB than BC associations, suggesting that BC memories are
actually weaker by comparison. This finding rules out a mem-
ory strength account. A second possible consequence relates to
differences in temporal context. In other words, neural patterns
evoked during AC test may more closely reflect BC than AB
study patterns simply because BC information was encoded in
a more similar temporal context. To this point, it is important
to note that study and test phase data were collected in sepa-
rate scans, thus minimizing the effects of low-level factors such
as high within-scan temporal autocorrelation. Nevertheless, it is
conceivable that differences in trial timing could give rise to
greater BC-AC than AB-AC study-test similarity due to higher-
level factors like cognitive context. To rule out this possibility,
we performed a control study-test lag analysis. We demonstrate
that our pattern similarity results do not track with the tempo-
ral distance between study and test, rendering an account based
purely on lag improbable. While these factors may certainly
contribute to our pattern similarity measures, they cannot fully
explain our findings. Thus, we believe that the pattern similar-
ity data reported here reflect the true engagement of a common
neural state during BC study and AC test.

Interestingly, the memory integration signatures observed
in CA1 in the present study converge with studies of rodent
hippocampus. First, recent work has implicated CA1 processes
in both detecting novelty in the environment as well as

1258 SCHLICHTING ET AL.

Hippocampus



enabling memory updating via increases in plasticity (Larkin
et al., 2014). This finding is consistent with an interpretation
of the present results as reflecting CA1-mediated integration
of new content into existing memories during study. Addi-
tional work has highlighted the importance of CA1 for nodal
coding, in which shared content is represented by the same
population of neurons across distinct events (Wood et al.,
2000; Singer et al., 2010; McKenzie et al., 2013). For
instance, one study demonstrated that while the firing pat-
terns of some CA1 cells reflected individual episode represen-
tations, others fired similarly across different types of episodes
that shared content (i.e., a common spatial location) (Wood
et al., 2000). Another study showed that in environments
with overlapping elements (related locations), a subset of CA1

and CA3 neurons responded similarly to the related locations
both within and across environments (Singer et al., 2010).
Together, these studies suggest that hippocampal neurons in
the CA fields can develop generalized firing patterns that
encode similarities across episodes. Consistent with this idea,
recent work demonstrated that some CA1 neurons respond
similarly to multiple spatial sequence locations learned in a
single environment, further evidence that this region may
code for “nodes,” or commonalities across experiences
(McKenzie et al., 2013). Our results are consistent with such
a nodal coding scheme, in which integrated memories repre-
senting shared B elements across AB and BC learning epi-
sodes are formed in CA1 during learning. Moreover, the data
presented here build upon the existing animal literature to
demonstrate the potential behavioral significance of nodal
coding—specifically, that integrated memories may support
novel judgments, allowing for rapid and appropriate action in
the absence of direct experience.

CONCLUSIONS

The present results suggest that area CA1 plays a special-
ized role during the encoding of overlapping information.
Utilizing new methodologies—high-resolution fMRI in
combination with neural pattern similarity analysis—we pro-
vide a direct comparison of the neural states engaged during
study of overlapping events and subsequent inference test.
These methods allow us to take advantage of distributed
patterns of hippocampal activation reflecting important con-
tent and process, thereby suggesting a mechanistic account
of the hippocampal subfield contributions to overlapping
event encoding. More broadly, our data are consistent with
the notion from the animal literature that CA1 signals devia-
tions of current events from memory-based expectations,
allowing for the construction of memory representations
that code the relationships among multiple experiences. The
formation of such integrated memory representations sup-
ports flexible judgments like novel inference, reflecting the
extension of memory beyond direct observation. Moreover,

the present results reinforce the idea that encoding and
retrieval do not occur in isolation, but rather are highly
interactive processes.
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