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a b s t r a c t

In this article we develop a new model of classification that is intermediate between the static, single
strategy decision-bound models and the dynamic trial by trial multiple systems model, dCOVIS. The new
model, referred to as the sCOVISmodel, assumes hypothesis-testing andprocedural-based subsystems are
active on each trial, but that the parameters that govern behavior of the system are fixed (static) within
a block of trials. To determine the clinical utility of the model, it was applied to nonlinear information-
integration classification data from patients with Parkinson’s (PD) and Huntington’s disease (HD). In one
application, themodels suggest that the locus of HD patients’ nonlinear information-integration deficits is
in their increased reliance on hypothesis-testing strategies, whereas the locus of PD patients’ deficit is in
the application of sub-optimal procedural-based strategies. In a second application, theweight associated
with the hypothesis-testing subsystem is shown to account for a significant amount of the variance in
longitudinal cognitive decline in non-demented PD patients above and beyond that predicted by accuracy
alone. Together, the accuracy rate and this model index account for 72% of the total variance associated
with cognitive decline in this sample of PD patients. Interestingly, the Wisconsin Card Sort task added no
additional predictive power above and beyond that predicted by nonlinear accuracy alone.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

There has been a long standing interest in understanding the
cognitive processes associated with clinical disorders. A prevalent
class of clinical disorders is those associated with damage to the
striatum,1 such as Parkinson’s disease (PD) or Huntington’s disease
(HD). Previous neuropsychological studies reveal a wide range of
cognitive deficits in areas such as working memory, attention,
set shifting, and procedural-based learning, even in patients who
do not meet formal criteria for dementia (Dubois & Pillon, 1997;
Lawrence et al., 1998; Owen, 2004; Salmon & Filoteo, 2007). These
past studies suggest that cognition can be impacted early in the
course of these diseases, and as such, the striatum plays a critical
role in cognitive functioning.
Although traditional neuropsychological testing is extremely

fruitful and informative, it tends to focus on comparisons of
simple measures of performance, such as proportion correct and

∗ Corresponding address: 1 University Station A8000, University of Texas, Austin,
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1 The striatum is the major input structure of the basal ganglia. It includes the
caudate nucleus and the putamen.
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mean reaction time, to infer cognitive deficits. Unfortunately, in
many domains, there are numerous (often qualitatively different)
cognitive strategies that yield the same level of performance,
with some strategies being associated with ‘‘deficient’’ cognitive
processes and others being associated with intact cognitive
processes. For example, patientswith PD orHD tend to be impaired
on theWisconsin Card Sorting Test (WCST), ameasure of executive
functioning, but often the exact nature of their impairment cannot
be determined by examining accuracy performance alone (Green
et al., 2002; Owen, 2004; Paolo, Troster, Axelrod, & Koller, 1995).
Recently there has been a growing realization that mathemat-

ical modeling techniques – used successfully to examine cogni-
tive processes in healthy (usually college age) individuals – can be
fruitfully applied to the study of cognitive processing in individuals
with brain damage (Busemeyer & Stout, 2002; Ell,Marchant, & Ivry,
2006; Maddox & Filoteo, 2005; Maddox, Filoteo, Delis, & Salmon,
1996;Maddox, Filoteo, & Huntington, 1998; Stout, Busemeyer, Lin,
Grant, & Bonson, 2004; Stout, Rock, Campbell, Busemeyer, & Finn,
2005; Yechiam, Busemeyer, Stout, & Bechara, 2005). In fact, sev-
eral recent ‘‘special issues’’ (including the current issue) and texts
have been devoted to this topic (Neufeld, 1998, 2002, 2007). Over
the past 10 years, our research team has contributed to this impor-
tant endeavor by examining classification performance in PD, HD,
aswell as in normal aging and amnesia (for a review see Filoteo and
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Maddox (2007) andMaddox and Filoteo (2005, 2007)). In brief, our
studies indicate that patients with damage to the striatum, such as
patients with PD or HD, are impaired in learning certain types of
categorization tasks, whereas patients with damage to the medial
temporal lobe memory system are not (Filoteo, Maddox, & Davis,
2001a,b;Maddox, Aparicio,Marchant, & Ivry, 2005;Maddox& Filo-
teo, 2001, 2007). These findings suggest an important role for the
striatum in learning certain categorization tasks.
The application of mathematical models to data collected in

our studies has greatly enhanced our understanding of the deficits
associated with various diseases. We typically apply decision
bound models (described in detail later) to the data collected from
each participant, with eachmodel instantiating a distinct cognitive
strategy. Participants are often grouped based on the cognitive
strategy that best accounts for their data, and performance
measures as well as model parameter estimates are compared
among these subgroups. This has been a very useful approach
and has led to many important insights regarding striatal patients’
category learning ability, and the specific cognitive processes
associated with classification learning that are deficient. We focus
on a few of these below, but the interested reader is directed to
the original sources for details (Filoteo, Maddox, Ing, Zizak, & Song,
2005; Filoteo, Maddox, Salmon, & Song, 2005, 2007).
Even so, one weakness of this approach is that each model

assumes a single fixed cognitive strategy. An overwhelming body
of data suggests that participants have availablemultiple cognitive
strategies (Erickson & Kruschke, 1998; Love & Gureckis, 2007;
Nosofsky, Palmeri, & Mckinley, 1994; Smith, Patalano, & Jonides,
1998; Thomas, 1998), and recent evidence suggests that different
neural systems sub-serve different classes of strategies (Ashby,
Alfonso-Reese, Turken, & Waldron, 1998; Ashby & Maddox, 2005;
Ashby & O’Brien, 2005; Ashby & Spiering, 2004; DeGutis &
D’Esposito, 2007; Filoteo et al., 2005; Maddox & Ashby, 2004;
Nomura et al., 2007; Poldrack et al., 2001; Seger & Cincotta,
2002, 2005, 2006). Importantly, each neural system (and its
associated strategy) is thought to be active on each trial, and
to generate a candidate response. Thus, a more psychologically
valid model would include multiple systems with each potentially
influencing the response generated on each trial. The overriding
aim of the current article is to develop and test such a model.
Because the focus of this special issue is on applications to clinical
science, our secondary aims are to encourage clinical scientists
to embrace mathematical modeling techniques. As a step toward
achieving this aim, we apply the model developed in this article
to clinical data collected in our lab in hopes of providing some new
conclusions regarding the cognitive deficits associatedwith striatal
damage.
In Section 2 we briefly review the multiple system approach

to classification and two types of classification learning tasks that
we have utilized. More extensive reviews can be found elsewhere
(Ashby et al., 1998; Ashby & Ennis, 2006; Ashby & Maddox,
2005; Ashby & O’Brien, 2005; Ashby & Spiering, 2004; Maddox &
Ashby, 2004). In the Section 5, we develop our multiple systems
modeling approach. To anticipate, the model builds upon the
popular decision bound model framework developed by Ashby
and colleagues (Ashby, 1992a; Ashby & Maddox, 1993; Maddox
& Ashby, 1993) and can be thought of as a ‘‘static’’ version of
Ashby et al.’s (1998) dynamic Competition between Verbal and
Implicit Systems (COVIS) model. In the fourth section we apply the
model framework to three sets of published data that examined
classification learning in PD and HD patients, and that illuminate
the utility of the model. We close with some general comments.
2. Multiple systems of classification

Classification involves learning to respond differently to objects
and events in different groups (or categories). It provides
information about which objects to approach or avoid, and how
an object should be used or manipulated. Understanding the
processes involved in classification is critical to understanding
human cognition.
During the past decade there has been a surge of interest in the

neural basis of classification learning (Ashby et al., 1998; Ashby &
Maddox, 2005; Love&Gureckis, 2007; Poldrack&Rodriguez, 2004;
Rodriguez, Aron, & Poldrack, 2006; Seger & Cincotta, 2005, 2006;
Shohamy et al., 2004). Perhaps the most important discovery to
come from this research is that humans have available multiple
classification learning systems, with each system being best suited
for learning a particular type of category structure, and each being
sub-served by different neural circuits (Ashby et al., 1998; Ashby
& O’Brien, 2005; Poldrack & Rodriguez, 2004; Reber, Gitelman,
Parrish, & Mesulam, 2003). A two-system model was proposed by
Ashby et al. (1998) that assumes a Competition between Verbal
and Implicit Systems (COVIS). The verbal system is an explicit
hypothesis-testing system that dominates the learning of rule-
based categories, and the implicit system is procedural-based and
dominates the learning of information-integration categories.
In rule-based category-learning tasks the categories can be

learned via an explicit reasoning process. Frequently, the rule that
maximizes accuracy (i.e., the optimal strategy) is easy to describe
verbally. In the most common applications, only one stimulus
dimension is relevant. The participant’s task is to discover this
relevant dimension and then to map the different dimensional
values to the relevant categories (e.g., as in the WCST). Other
rule-based tasks require attention to two or more dimensions. For
example, in Fig. 1A the stimuli are lines that vary across trials
in length and orientation. Fig. 1A displays some representative
stimuli from each category, but in most applications each category
contains many (50–100) unique stimuli. The correct rule (denoted
by the broken horizontal and vertical line) is a conjunction of the
line length and orientation and can be verbalized in the following
manner: ‘‘the stimulus is in category A if the line is long and
shallow and is in category B otherwise’’. The key requirement
is that the correct categorization rule in rule-based tasks is one
that can be discovered by a logical reasoning (explicit, hypothesis-
testing) process that depends on working memory and executive
attention (Ashby et al., 1998). This theory correctly predicts
that rule-based learning is disrupted in normal participants by a
concurrent or sequential workingmemory-demanding task and by
individual differences in working memory span (Decaro, Thomas,
& Beilock, 2008; Tharp & Pickering, 2008; Waldron & Ashby, 2001;
Zeithamova & Maddox, 2006, 2007).
A variety of evidence implicates the prefrontal cortex, anterior

cingulate, head of the caudate nucleus, and medial temporal lobe
structures in rule-based category learning. This includes the results
of neuroimaging studies (Filoteo et al., 2005; Konishi et al., 1999;
Lombardi et al., 1999; Monchi, Petrides, Petre, Worsley, & Dagher,
2001; Nomura et al., 2007; Rao et al., 1997; Rogers, Andrews,
Grasby, Brooks, & Robbins, 2000; Seger & Cincotta, 2006; Volz
et al., 1997), single-unit recording studies (Asaad, Rainer, & Miller,
2000; Hoshi, Shima, & Tanji, 1998; Muhammad, Wallis, & Miller,
2006; Wallis, Anderson, & Miller, 2001; White & Wise, 1999), and
studies with various neuropsychological patient groups (Ashby,
Noble, Filoteo, Waldron, & Ell, 2003; Brown & Marsden, 1988;
Cools, van den Bercken, Horstink, van Spaendonck, & Berger, 1984;
Downes, Roberts, Sahakian, Evenden, Morris, & Robbins, 1989;
Filoteo, Maddox, Ing, & Song, 2007; Kimberg, D’Esposito, & Farah,
1997; Snowden, Craufurd, Griffiths, Thompson, & Neary, 2001).
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Fig. 1. (A) Representative stimuli and decision bounds associated with a
conjunctive rule-based classification task. (B) Representative stimuli and decision
bounds associated with a nonlinear information-integration classification task.

In contrast to rule-based tasks, information-integration tasks
are optimally learned by integrating perceptual information
across two or more non-commensurable stimulus dimensions
at some pre-decisional stage. Typically, the optimal strategy
in information-integration tasks is difficult or impossible to
describe verbally (which makes it difficult to discover via logical
reasoning). Rather, it is thought that participants learn to associate
classification responses to different regions of perceptual space
through a gradual, incremental learning process. An example
in which the correct strategy requires nonlinear information-
integration is shown in Fig. 1B.
The search for the neural basis of information-integration

category learning has focused on the striatum. This follows because
information-integration learning has many of the properties
associated with forms of learning often attributed to the striatum,
such as habit learning and procedural-based learning (Brown,
Desimone, & Mishkin, 1995; Fernandez-Ruiz, Wang, Aigner, &
Mishkin, 2001; Knowlton, Mangels, & Squire, 1996; Squire,
1992; Willingham, 1998). Ashby and colleagues (Ashby et al.,
1998; Ashby, Ennis, & Spiering, 2007; Ashby & Waldron, 1999)
proposed that the key site of information-integration learning
was at cortical–striatal synapses between pyramidal cells from
visual association cortex and medium spiny cells in the striatum.
The direct pathway out of the striatum projects to premotor
cortex (e.g., SMA and pre-SMA) via the internal segment of the
globus pallidus and the ventral anterior/ventral lateral thalamic
nuclei. The initial cortical–striatal projections are characterized
by massive convergence, with about 10,000 visual cortical cells
converging on each medium spiny cell (Wilson, 1995). Ashby et al.
(1998) proposed that through a procedural-based learning process,
each striatal unit associates an abstractmotor programwith a large
group of visual cortical cells (i.e., all that project strongly to it) and
that this learning is facilitated by a dopamine mediated training
signal from the substantia nigra.
A variety of behavioral results with normal individuals support

this generalmodel (for a review, see Ashby andMaddox (2005) and
Maddox and Ashby (2004)). For example, information-integration
category learning is impaired if the feedback is delayed by as
little as 2.5 s, whereas delays as long as 10 s have no effect on
rule-based learning (Maddox, Ashby, & Bohil, 2003; Maddox &
Ing, 2005), a finding that is highly consistent with what is known
about the temporal dynamics of the dopamine reward signal
(Gamble & Koch, 1987; MacDermott, Mayer, Westbrook, Smith,
& Barker, 1986; Schultz, 1998; Schultz, Tremblay, & Hollerman,
1998). Consistent with the prediction that the striatum is involved
in information-integration category learning, a number of studies
have reported that patients with striatal dysfunction are impaired
in information-integration tasks (Filoteo et al., 2001a; Filoteo,
Maddox, Salmon et al., 2007; Maddox & Filoteo, 2001) and
neuroimaging studies of information-integration learning have
reported significant learning-related striatal activation (DeGutis
& D’Esposito, 2007; Nomura et al., 2007; Seger & Cincotta, 2002,
2005).

sCOVIS: A Model Intermediate Between Static, Single Strategy
Decision Bound Models and Dynamic, Trial-By-Trial COVIS
(dCOVIS).

2.1. Decision bound theory

Decision bound theory is an extension of Ashby and Townsend’s
(1986) General Recognition Theory to categorization.2 Consider
two bivariate normally distributed categories, A and B and their
associated probability density functions fA(x, y) and fB(x, y) with
category means µA and µB and category covariance matrices 6A
and 6B. For any given stimulus, the optimal classifier computes
the likelihood ratio, lo(x, y) = fB(x, y)/fA(x, y). Assuming no bias
toward one category over the other, the optimal classifier uses the
following decision rule:

If lo(x, y) < 1.0 then respond ‘‘A’’, otherwise respond ‘‘B’’. (1)

With bivariate normally distributed categories the decision
bound associated with the optimal classifier will always be linear
or a quadratic curve.
Humans rarely use the optimal decision rule (e.g. Ashby

and Maddox (1990, 1992) and Mckinley and Nosofsky (1996))
and so in decision bound theory it is assumed that participant
uses a suboptimal strategy in the presence of perceptual and
criterial noise. Perceptual noise exists because there is trial-by-
trial variability in the perceptual information associated with each
stimulus.We assume that the participant’s percept of Stimulus i on
any trial is xpi = [xpi, ypi]′, where xpi = xi+ ep, ypi = yi+ ep, and ep
is a univariate normal random variable with mean 0 and standard
deviationσp, that represents the effect of perceptual noise. Criterial
noise exists because there is trial-by-trial variability in thememory
for the decision bound. The simplest decision bound model is
the optimal decision bound model. The optimal decision bound
model is identical to the optimal classifier (Eq. (1)) except that

2 The reader interested in the details of General Recognition Theory is directed
to a number of seminal works (Ashby, 1988, 2000; Ashby & Perrin, 1988; Ashby &
Townsend, 1986; Kadlec & Townsend, 1992; Thomas, 1995).



112 W.T. Maddox et al. / Journal of Mathematical Psychology 54 (2010) 109–122
perceptual and criterial noise are incorporated into the decision
rule. Specifically,

if lo(xpi) < 1+ ec then respond ‘‘A’’, otherwise respond ‘‘B’’, (2)

where ec is a univariate normally distributed random variablewith
zero mean and standard deviation σc that represents the effects
of criterial noise. The most general version of the model abandons
the likelihood ratio on the left side of Eq. (2) for a general function
h(xpi), although we generally assume hwill be linear or quadratic.
Because h(xpi) is linear or quadratic, the optimal likelihood ratio
value of 1.0 is absorbed into the intercept of the linear bound or
the constant term in the quadratic bound and we are left with

if h(xpi)+ ec < 0 then respond ‘‘A’’, otherwise respond ‘‘B’’. (3)

Assuming the Eq. (3) decision rule, the probability of responding A,
P(RA|x) is

P(RA|x) = P[h(xp)+ ec < 0 | x]. (4)

Assuming that h(xp) is normally distributed, which holds exactly if
h(xp) is linear and is only approximate when h(xp) is quadratic,
then Eq. (4) can be evaluated from the cumulative normal
distribution and reduces to

P(RA|x) = Φ[µh(x)/(σ 2h(x) + σ
2
c )
1/2
]. (5)

The mean and variance depend upon the form of the h(xp).
These are derived in detail in Ashby (1992a, pgs. 459–467) and
in the Appendix for the specific models applied in the empirical
applications below.

2.2. Hypothesis-testing and procedural-based decision bound models

In keeping with the two system approach (Ashby et al., 1998),
we outline two classes of decision rules; those that are congruent
with an explicit reasoning (hypothesis-testing) process and those
that are congruent with an implicit procedural based process.
Explicit hypothesis-testing models all involve linear decision

bounds that are parallel to one or both of the coordinate
axes. These include simple unidimensional rules that involve a
single horizontal or vertical decision bound, and more complex
conjunctive rules. Fig. 2A depicts an explicit hypothesis-testing
strategy that involves a conjunctive rule on length and orientation.
The conjunctive rule is defined by a criterion along the xdimension,
xo, and a criterion along the y dimension, yo, and assumes that the
participant responds ‘‘A’’ to long, shallow angle lines, and ‘‘B’’ to all
others. Both criteria are free parameters in the model, along with
the perceptual noise parameter, σ 2p .

3 The equation for computing
the predicted probability of respondingA is included in Fig. 2A. This
model is also referred to as an independent decisions classifier, and
is detailed in Ashby (1992a, pgs. 465–467; see also Appendix).
Implicit procedural based models include linear and nonlinear

decision bounds. Fig. 2B depicts an implicit procedural based
strategy that involves a quadratic decision bound. The decision
bound is defined as h(x, y) = a1x2+a2y2+a3xy+b1x+b2y+c0. All
six constant terms are free parameters (although one can generally
be set to 1), along with the perceptual noise, σ 2p , and criterial
noise, σ 2c parameters. The equation for computing the predicted
probability of responding A is included in Fig. 2B. Thismodel is also
referred to as a general quadratic classifier, and is detailed in Ashby
(1992a, pgs. 460–462; see also Appendix).

3 When the decision bounds are linear, the perceptual and criterial noise
parameters are not separately identifiable, and only the sum can be estimated
(Ashby & Maddox, 1993).
Fig. 2. Static, single system decision bound models. (A) Example of a conjunctive,
hypothesis-testingmodel. (B) Example of a nonlinear, procedural-basedmodel. (see
text for details).

Decision bound models that instantiate hypothesis-testing and
procedural based strategies are generally applied to the data from
individual participants4 on a block-by-block basis. In other words,
a block of trials (usually 50 or more trials) is specified and the
model parameters are adjusted in such a way that they best
account for the full block of data. Fits of the models are then
compared with each other and the best fitting model is assumed
to represent the strategy that the participant used throughout the
block. Thus, this approach assumes that the participant uses either
a hypothesis-testing or a procedural-based strategy on each trial of
the block, and assumes that the parameters that define the specific
strategy (e.g., the xo and yo values in Fig. 2A, or the a1, a2, a3, b1, b2,
and c0 values in Fig. 2B) remain fixed throughout the block.

2.3. dCOVIS

In their seminal article, Ashby et al. (1998) developed a
dynamic trial-by-trial model that assumes that the hypothesis-
testing and procedural-based systems are operative on each trial
and that the parameters that governed behavior in each system
(e.g., the decision bound parameters), as well as the parameters
that governed the interaction between systems (e.g., the system

4 A large body of work shows that modeling data aggregated across participants
can be misleading (Ashby, Maddox, & Lee, 1994; Estes, 1956; Maddox, 1999).
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weights associated with each system) could change from trial-
to-trial. The details of the model can be found in Ashby et al.,
but a brief summary is offered here. On each trial, the model
generates an output from the hypothesis-testing and procedural
based systems. The output is in the form of a response probability
much like that generated from the decision boundmodels outlined
above. Each response probability is scaled by its associated system
weight,5and the weighted outputs are compared. The response
associated with the hypothesis-testing system is selected on a
given trial if its scaled output is larger than that generated from
the procedural based system. Conversely, the response associated
with the procedural-based system is selected on a given trial if its
scaled output is larger than that generated from the hypothesis-
testing system. Importantly, feedback provided to the model on
each trial is propagated back through the system and is used
to modify specific parameters. Thus, unlike the decision bound
modeling approach, the dCOVIS model can change (a) the decision
bound parameters associated with a particular strategy, (b) the
nature of the strategy applied within a system (e.g., switch from a
unidimensional rule on one trial to a conjunctive rule on the next),
and/or (c) the systemweight associated with the two systems on a
trial-by-trial basis.

2.4. sCOVIS

In this section we develop a model that can be thought of as
intermediate between the static, single strategy decision bound
models, and the dynamic, multiple systems dCOVIS model. The
new model, referred to as the sCOVIS model, is applied on a block
by block basis and assumes that the parameters are fixed within
a block of trials, like the decision bound models, but assumes
that both the hypothesis-testing and procedural-based systems
are operative on each trial, like dCOVIS (for a related model
see Zeithamova, Filoteo, Simmons, Maddox, & Paulus, 2007).
It is important to be clear up front that we believe that

classification learning is a dynamic process. In that sense, assuming
that a static set of parameter values characterizes performance
on each trial within a block of trials will clearly not capture
the complexity of behaviors and changes to the neural systems
that occur on a trial-by-trial basis. On the other hand, dynamic
models can be extremely difficult to workwith.Within the dCOVIS
framework the nature of the system and its output on trial n
depends on the nature of the system and its output on trial n− 1,
but the behavior on trial n−1 is probabilistic. Thus a large number
of model simulations are needed for each set of initial parameter
values, and a wide range of response patterns can emerge that are
highly dependent on the initial subjective selection of these initial
parameter values.
Unlike dCOVIS, sCOVIS is fairly easy to program and implement.

With respect to clinical science and assessment, we feel that the
simplicity of the sCOVIS model is a major strength given our hope
that the application of this model will benefit neuropsychological
researchers studying classification learning in various patient
populations. It is also worth mentioning that as a participant
gains experience with a particular classification problem, their
behavior becomes more static in the sense that the parameters
that describe the behavior of each subsystem (e.g., hypothesis-
testing and procedural based) become more stable (Ashby et al.,
1998). Thus, the sCOVIS parameter values become increasingly
more psychologically valid as the participant gains experiencewith

5 In both original COVIS and in our Static COVIS implementation, the system
weight associated with the hypothesis testing system, wHT , is constrained to fall
within the range 0–1, and the weight associated with the procedural based system
is defined as 1− wHT .
the task.Manyof our clinical applications focus on later, as opposed
to earlier, learning and thus take advantage of this property of the
model.
Fig. 3 provides a schematic of the behavior of the sCOVIS model

on trial i. At the initial stage of processing, the stimulus value on
trial i(xi, yi) is input into the hypothesis-testing and procedural
based subsystem. As just one example, the hypothesis testing
subsystem might instantiate a conjunctive rule like that in Fig. 2A,
and the procedural based subsystemmight instantiate a quadratic
decision bound like that in Fig. 2B. Each subsystem then generates
an output in the form of a response probability [i.e., PHTi(RA) and
PPBi(RA); see Appendix A].
Two methods for combining the system level output were

examined. The Competition Decision Rule is identical to that
used in dCOVIS. It scales the output from each subsystem by
a system weight (as described above) and applies the response
probability associated with the largest subsystem output (see
Fig. 3, left panel). The Cooperation Decision Rule, on the other
hand, assumes that the response probability outputted on a trial
is a weighted sum of the two subsystem outputs, and thus each
subsystem contributes to the response given on each trial (see
Fig. 3, right panel). Thus, whereas the competition version of
the model assumes that one sub-system drives the response on
each trial (although the ‘‘winning’’ subsystem can change across
trials), the cooperation version instantiates more of a ‘‘mixture’’
model approach, assuming that the output from both sub-systems
impacts the response on each trial. Mixture models of this sort are
popular in the classification literature and are thus not without
precedence (Estes, 1994; Minda & Smith, 2001; Nosofsky & Zaki,
2002; Rosseel, 2002).
Importantly, it has become increasingly clear that various

forms of brain damage secondary to neurological conditions often
results in increased neural activity above and beyond that seen
in non-patient populations. This may represent some sort of
compensation for damage to a particular neurocognitive system.
Moody, Bookheimer, Vanek, and Knowlton (2004) provided some
evidence for this in PD patients who performed a probabilistic
category learning task while undergoing functional MRI. Thus, a
cooperation model that takes into account the possibility of two
systems contributing to a response could provide a more accurate
accounting of categorization in patients with striatal damage (such
as patients with HD or PD). This compensatory reaction to damage
may also reveal itself as a deficit in patients’ ability to transition
away from hypothesis-testing strategies toward procedural-based
strategies as they would need to do to perform optimally in the
nonlinear information-integration tasks in Applications 1 and 2.
This would result in larger estimates of the hypothesis-testing
system weight. We examine each of these possibilities below.

3. Application 1:Nonlinear perceptual classification learning in
PD and HD patients

In this section we briefly review the accuracy and modeling re-
sults from two published studies conducted in our lab that exam-
ined nonlinear information-integration classification learning in
10 non-demented PD patients and 5 age- and education-matched
controls (Maddox & Filoteo, 2001), and 7 HD patients and 6 age-
and education-matched controls (Filoteo et al., 2001a). Following
the brief review, we apply the sCOVIS framework to the data and
summarize the findings. A scatterplot of the stimuli and optimal
decision bound used in these two studies are displayed in Fig. 4A.
Each stimulus was composed of a horizontal and vertical line con-
nected at the upper left with each line varying in length across tri-
als. The optimal rule can not be verbalized and instead is defined
by a quadratic function of the horizontal and vertical line lengths.
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Fig. 3. Flow chart of the information stream associated with the sCOVIS model (see text for details).
Fig. 4. (A) Non-linear information integration category structures used in Filoteo et al. (2001a) and Maddox and Filoteo (2001) (see text for details). (B) Non-linear
information integration category structures used in Filoteo, Maddox, Salmon et al. (2007) (see text for details). Filled circles denote category A stimuli and open squares
denote category B stimuli. The broken quadratic curve denotes the optimal decision bound.
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In both conditions, optimal accuracy was 95%. Each experimental
condition consisted of 6 100-trial blocks of trials.
PD and HD participants showed statistically significant non-

linear information-integration classification learning deficits rel-
ative to controls. In fact, in the sixth block of 100-trials PD patients
showed a 10% deficit [PD = 79%; controls = 89%; F(1, 13) = 7.18,
p < .05; ε2 = .356] while HD patients showed a 7% deficit [HD =
83%; controls = 90%; F(1, 11) = 14.30, p < .01; ε2 = .565].
It is worth mentioning that our modeling approach to classi-

fication learning has evolved much over the past several years.
In our original publication of these two studies we did not apply
hypothesis-testing models to data from information-integration
tasks. Insteadwe focused exclusively on the application of decision
bound models that assumed a procedural-based strategy. The aim
of our original modeling approach was two-fold. First, we were in-
terested in determining howwell a participant learned the optimal
decision rule. To achieve this goalwe fit the optimal decision bound
model Eq. (3) to each block of data separately for each partici-
pant. As ameasure of categorization rule learningwe examined the
goodness-of-fit value (i.e., the maximum likelihood value, − ln L,
negative log likelihood) from the optimal model. The smaller the
fit value, the better the optimal rule describes the data. Second, we
examined variability in the application of the best fitting decision
bound, referred to as rule application variability. To achieve this
goal we fit a sub-optimal model that assumed a quadratic decision
bound, but allowed the decision bound parameters to be estimated
from the data. As a measure of rule application variability, we ex-
amined the criterial noise estimate from this sub-optimal model.
It is important to note that both poor categorization rule learning
and high rule application variability will lead to comparable per-
formance decrements at the level of accuracy. Thus at the level of
accuracy rates these very different processes are non-identifiable.
Only with the model-based approach can these two sub-processes
be teased apart and be made identifiable.
In the original application, we applied the models to each

of the six blocks of data, but focused on fits to the final (6th)
block. The results can be summarized as follows. First, the HD
patients showed categorization rule learning deficits but not
rule application variability deficits (although the trend was in
that direction) suggesting that their performance deficit was
due primarily to an inability to learn the optimal rule. Second,
the PD patients’ evidenced categorization rule learning and rule
application variability deficits, suggesting that their accuracy
deficit was due to both an inability to learn the optimal rule
and to greater variability in the application of the rule that they
had learned. Interestingly, a regression analysis indicated that PD
patients’ goodness-of-fit values and criterial noise values uniquely
predicted their accuracy performance on the categorization task,
suggesting that both categorization learning and rule-application
variability were each important factors in determining to what
degree the rule was learned.

3.1. sCOVIS

Application of the sCOVIS framework began by applying
some hypothesis-testing and procedural based decision bound
models to the final block of data using maximum likelihood
parameter estimation procedures. These include the optimal
(2 parameters; perceptual and criterial noise) and sub-optimal
quadratic (7 parameters; 5 decision bound, perceptual and criterial
noise) procedural-based models, a unidimensional horizontal
length hypothesis-testing model (2 parameters; horizontal length
criterion and perceptual noise), a unidimensional vertical length
hypothesis-testing model (2 parameters; vertical length and
perceptual noise), and an equal line length bi-linear model (3
parameters; two intercepts and perceptual noise). The decision
rule for this latter model is as follows: If the length of the two lines
is approximately equal respond ‘‘A’’; otherwise respond ‘‘B’’. This
is a reasonable strategy because all members of category A have
similar horizontal and vertical line lengths, whereas the members
of category B have more disparate line lengths. More formally,
this is a bi-linear categorization rule in which the slope of each
categorization rule is equal to 1, one intercept is positive and the
other is negative.6
We found that the sub-optimal quadratic procedural-based

model provided a significantly better fit to the data than the
optimal model for 9 of 10 PD patients, 7 of 7 HD patients, 4 of
5 PD controls and 6 of 6 HD controls. These conclusions were
based on G2 Likelihood Ratio Tests (Wickens, 1982) with a p <
.05 minimum level of significance. In addition, we found that the
bilinear model provided a significantly better fit to the data than
either of the unidimensional models for all participants (again
based on G2 tests with a p < .05 level of significance). In light of
these findings and following the approach taken in Application 1,
we constructed a competitive and cooperative version of sCOVIS
that assumed a quadratic procedural-based strategy and a bilinear
hypothesis-testing strategy. Each model was applied to the data
using maximum likelihood parameter estimation procedures.
Several aspects of the sCOVIS model results are worth

highlighting and are summarized in Table 1. First, we compared
the performance of the competitive and cooperative versions of
sCOVIS. Although its original formulation assumed a competition
between systems (Ashby et al., 1998), we know of no direct test of
this assumption, or direct comparison with a cooperative version
of the model. Table 2 displays the maximum likelihood values for
competitive and cooperative versions of sCOVIS separately for each
participant. Because these two models contain the same number
of parameters, the fit values were compared directly. The best
fittingmodel is in bold type. The resultswere clear. The cooperative
version of themodel provided a better account of the data than the
competitionmodel for 10 of 10 PD patients, 5 of 7 HD patients, 4 of
5 PD-controls and 6 of 6 HD-controls suggesting a clear advantage
for the cooperative version of the model. Thus, the remainder of
our analyses will focus on the cooperative version of sCOVIS.
Next we conducted nested model (χ2) tests to determine

whether the cooperative sCOVIS model provided a significant
improvement in fit over the best of the quadratic procedural-based
and the bilinear hypothesis-testing models (both of which are
special cases of the sCOVIS model). The sCOVIS model provided
a significant improvement in fit over the quadratic procedural-
based and the bilinear hypothesis-testing models (based on G2
tests with a p < .05 level of significance) for 9 of 10 PD
patients, 6 of 7 HD patients, 2 of 5 PD-controls and 2 of 6 HD-
controls. Interestingly, significantly more of the patient data than
the control data was best fit by the cooperative sCOVIS model
for both the PD [χ2(1) = 4.261, p < .05] and HD [χ2(1) =
3.745, p = .053] suggesting that the need to incorporate both the
procedural based and hypothesis testing system was more critical
for the patients than for the controls.
This finding supports our hypothesis above that patients

are less able (or willing) to gradually transition away from

6 The reader might note that this hypothesis-testing model does not assume
decision bounds that are parallel with the coordinate axes of horizontal and vertical
length and thus do not satisfy the definition outlined earlier. These two-line stimuli
are unique in the sense that there are at least twodifferentways of dimensionalizing
the stimuli. One dimensionalization is based on horizontal and vertical line length
and is depicted in Fig. 4A. A second dimensionalization, however, is based on
coordinate axes that are based on a 45 degree rotation of the horizontal and vertical
line length space. These might be called the ‘‘shape’’ and ‘‘area’’ dimensions, with
the shapes beingmore or less square-like and the area increasing in size. It is in this
alternative dimensional space, that the bilinear model would be characterized as a
version of hypothesis-testing.
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Table 1
sCOVIS model fits in Application 1.

PD PD-control HD HD-control

Proportion of participants for which the Cooperation Model is superior to the Competition Model 1.00 0.80 0.71 1.00
Proportion of participants for which the Cooperation Model fits significantly better than the PB or HT Models 0.90a 0.40 0.86 0.33
Average HT system weight (Standard error) 0.46

(0.05)
0.41
(0.10)

0.50
(0.05)

0.23
(0.04)

a p < .05. Average PB system weight is 1-wHT .
Table 2
Goodness-of-Fit (− ln L) Values from the final block of trials for the cooperation (Coop) and competition (Comp) versions of sCOVIS for Application 1.

Participant PD PD-control HD HD-control
Coop Comp Coop Comp Coop Comp Coop Comp

1 22.07 29.52 8.15 9.25 17.38 27.09 8.70 12.20
2 19.63 25.69 6.45 8.29 16.81 21.91 7.11 9.25
3 18.91 24.68 6.73 8.31 19.57 19.38 6.11 8.29
4 22.50 30.52 18.42 21.27 24.91 24.04 3.01 6.08
5 18.76 19.98 21.69 20.80 29.54 32.24 10.95 16.75
6 39.65 43.20 14.31 18.81 0.00 2.49
7 44.24 49.04 31.32 33.76
8 13.84 15.34
9 19.34 23.77
10 47.49 50.38
hypothesis-testing strategies toward procedural-based strategies
as they would need to do to perform optimally in the nonlinear
information-integration task yielding a larger impact of the
hypothesis-testing system on performance. Such an impairment
to transitioning away from hypothesis-testing approaches toward
procedural-based approaches may be due to damage in the
neural regions that subserve procedural-based learning (e.g., the
striatum). In support of this claim,we found a consistent advantage
for the sCOVIS model over the quadratic procedural-based and the
bilinear hypothesis-testing models (based on G2 tests with a p <
.05 level of significance) across blocks for the patientswith 7, 6, 5, 6,
6, and 9 of the 10 PD patient’s data being better fit by the sCOVIS in
blocks 1–6, respectively and 4, 5, 5, 4, 6, and 5 of the 7 HD patient’s
data being better fit by the sCOVIS in blocks 1–6, respectively. On
the other hand, we found a strong trend away from better fits of
the sCOVISmodel over the quadratic procedural-based andbilinear
hypothesis-testing models (based on G2 tests with a p < .05 level
of significance) across blocks for the controls with 3, 3, 2, 2, 3, and
1 of the 5 PD-control patient’s data being better fit by the sCOVIS
in blocks 1–6, respectively and 4, 5, 2, 2, 2, and 1 of the 6 HD-
control patient’s data being better fit by the sCOVIS in blocks 1–6,
respectively. It is possible that controls were able to undergo such
a strategy transition because of a normal striatum.
We next examined the system weight associated with the

hypothesis-testing subsystem. The average hypothesis-testing
system weights (along with the standard errors) are displayed in
Table 1. Several comments are in order. First, the average system
weights are larger for the patient groups than for the controls.
This is expected given the fact that the sCOVIS model was more
likely to provide a significant improvement in fit over the static,
single strategy models. Second, whereas the hypothesis-testing
system weights were significantly larger in the HD patients than
in their associated controls [t(11) = 4.425, p < .001; η2 = .64],
the weights did not differ significantly across the PD patients and
their associated controls [t(13) < 1.0; η2 = .02]. It is worth
mentioning that this finding holds, not because the weights are
larger for PD patients than for HD patients, but rather because the
weights are smaller for the HD controls than for the PD controls.
Given that these two groups differed in age (withHD controls being
younger than PD controls), these findings suggest the possibility
that age might also negatively impact one’s ability to shift away
from a hypothesis-testing strategy (Filoteo & Maddox, 2004).
We also examined the system weights across blocks. These

values are displayed in Table 3 along with the standard errors. As
expected, the system weights remained relatively constant across
blocks for the patients remaining quite large even during the final
block of trials. On the other hand, and also as expected, there was
a general decline in the system weight values for the controls.
Finally, we examined the noise estimates from the model.

We conducted t-tests comparing the noise estimates from the
procedural-based system across patients and controls, and noise
estimates from the hypothesis-testing system across patients and
controls. None of the effects were significant due to large intra-
group variability estimates. Despite the lack of significance, a few
comments are in order. Interestingly, the noise estimates from the
procedural based system were much larger for the patients than
for the controls [average sum of perceptual and criterion noise: PD
= 1.85 (s.e.= 1.50; PD controls= .69 (s.e.= .60); HD= 2.94 (2.15);
HD controls= .58 (s.e.= .49)], whereas the group differenceswere
much smaller for the noise estimates from the hypothesis-testing
system [average perceptual noise: PD = 2.32 (s.e. = 1.25); PD
controls = 1.76 (s.e. = .78); HD = 1.45 (s.e. = .93); HD controls
= 1.03 (s.e. = .65)]. Although speculative, these data suggest that
the patient group differences are larger in the procedural-based
sub-system than in the hypothesis-testing sub-system. A visual
examination of the best fitting quadratic decision bounds suggests
that the locus of the PD patient deficit was due to poor learning
of the optimal quadratic decision bound. Although both PD and
HD patients were highly sub-optimal, the degree of suboptimality
appeared larger for the PD patients. Thus, based on the fits of
sCOVIS, it appears that the locus of HD patients’ accuracy deficit in
nonlinear information integration classification learning was due
to too much reliance on the sub-optimal hypothesis-testing sub-
system, whereas the locus of PD patients’ deficit appeared to be
in the use of a highly sub-optimal quadratic decision bound in the
procedural-based subsystem.

3.2. Brief summary

First, a cooperation and competition version of sCOVIS was
developed and applied to the nonlinear information-integration
classification learning data from PD, HD, and healthymatched con-
trols. Interestingly, the cooperative version of the model consis-
tently outperformed the competition version for all participant
groups suggesting that the system level interaction might differ
from that originally proposed in dCOVIS. Second, inclusion of both
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Table 3
Average (and Standard error) of hypothesis-testing system weights for Application 1.

Block
1 2 3 4 5 6

PD Average 0.49 0.62 0.45 0.65 0.47 0.46
Standard error 0.07 0.08 0.07 0.09 0.06 0.05

PD-control Average 0.68 0.67 0.55 0.80 0.51 0.41
Standard error 0.09 0.10 0.21 0.16 0.15 0.10

HD Average 0.64 0.40 0.44 0.52 0.47 0.50
Standard error 0.09 0.07 0.10 0.08 0.09 0.05

HD-control Average 0.67 0.56 0.36 0.75 0.29 0.23
Standard error 0.07 0.09 0.13 0.05 0.07 0.04
the procedural-based and hypothesis-testing systems in the archi-
tecture of sCOVIS was more important in predicting the data from
the patients than the controls. This is reflected by the fact that a
larger proportion of patients’ data, relative to the controls’ data,
was best fit by the sCOVIS framework as compared to the separate
models alone. This finding supports our claim that both systems
must be incorporated in clinical science investigations of classi-
fication learning. Finally, although we found analogous accuracy
deficits for HD and PD patients, the sCOVIS framework suggests
that the locus of the deficits might be different. Specifically, HD
patients were relying too much on the sub-optimal hypothesis-
testing system, with an average hypothesis-testing system weight
of .50 for the HD patients and .23 for the controls. PD patients
and controls hypothesis-testing system weights did not differ, but
the locus of their deficit appeared to be in the use of highly sub-
optimal quadratic decision bounds within the procedural-based
subsystem.
This pattern of findings in the model parameters is congruent

withwhatwe know about the effects of PD andHDon the striatum.
HD is characterized by cell loss in the striatum, whereas PD is
characterized by striatal dysfunction that is secondary to loss of
dopamine projecting into the striatum. In other words, in HD there
is damage to the striatum, whereas in PD there is dysfunction
in the striatum. If the striatum is damaged as in HD, then it is
reasonable to predict a greater reliance on other learning systems,
such as the hypothesis-testing system, as we observed in the
sCOVIS modeling. In contrast, in a dysfunctional striatum, the
procedural-based systemmay still be available to a certain extent,
but it likely operates at a sub-optimal level. This would lead us to
predict the use of less optimal quadratic decision bounds in the
sCOVIS model as we observed.
Onemay argue that it is also possible that themodel differences

observed between PD and HD participants are due simply to
the fact that all the PD patients were nondemented, whereas
the HD patients had significant global cognitive deficits (with
some meeting the criteria for dementia). Although we cannot rule
this out, it is important to reiterate the basic accuracy results
summarized above. HD patients yielded 83% accuracy and PD
patients yielded 79% accuracy in the final block of training. Both
of these accuracy rates reflect significant learning, with the HD
patients achieving a higher performance level. In addition, the
fits of all the models were comparable across PD and HD patient
groups. If HD patients were simply more cognitively impaired, we
would expect consistently poorer fits of themodels to the HD data.

4. Application 2: Predicting cognitive decline in PD patients
using sCOVIS

One of the most important challenges facing clinical scientists
is to determine the clinical utility of their performance measures
by ascertaining whether such measures are predictive of future
cognitive decline in progressive diseases, such as PD or HD.
In a recent study (Filoteo, Maddox, Salmon et al., 2007), we
used performance on a nonlinear information-integration task to
predict cognitive decline in PD patients. Seventeen non-demented
PD patients were asked to complete six 100-trial blocks in the
nonlinear information-integration task displayed in Fig. 4B.7 The
stimuliwere lines that varied in length and orientation. Replicating
our previous work (Maddox & Filoteo, 2001), we found PD patients
to be impaired relative to matched controls in terms of accuracy.
These patients also completed the Mattis Dementia Rating Scale
(MDRS; Mattis, 1988), which is a measure of global cognitive
functioning that has been used successfully with PD patients
in both clinical and research settings (Brown, Rahill, Gorell,
Mcdonald, Brown, & Sillanpaa, 1999). Upon initial testing, the PD
patients did not differ from controls on the MDRS, despite their
performance impairment in the nonlinear information-integration
task.
Follow-up testing was conducted an average of 1.6 years after

the initial testing, at which time the 17 PD patients were again
administered the MDRS to determine whether performance on
the nonlinear task (1.6 years earlier) predicted future cognitive
decline based on the change in MDRS scores. During the initial
testing period, the PD patients’ mean MDRS total score was 139.0
and at the time of the second evaluation, their mean score was
134.2. Interestingly, poorer performance in the final block of the
nonlinear information-integration task was highly predictive of
future decline on the MDRS (r = −.78; 61% of the variance),
whereas poorer performance (an increase in perseverative errors)
on a more traditional classification learning task (the WCST)
was less predictive of decline (r = .42; 18% of the variance).
Importantly, none of the patients were considered to be demented
at the time of their second evaluation and accuracy performance
in the nonlinear condition did not correlate with patients’ initial
MDRS scores.8
In this section, we extend these analyses, by applying the

sCOVISmodel to these data.Wewill then use information garnered
from these fits to determine whether significant additional
variance in cognitive decline can be captured. Filoteo and
Maddox (2007) showed that decision boundmodel fits, specifically
identifying whether a hypothesis-testing model or a procedural
based model provided the best account of the data, accounted for
a significant additional 15% of the variance in cognitive decline
in this sample. Thus, it is worth determining whether the more
psychologically valid multiple systems approach will yield a
similar result.
We took the same approach outlined in Application 1 to

fitting of the sCOVIS model. We began by applying the op-
timal (2 parameters; perceptual and criterial noise) and sub-
optimal quadratic (7 parameters; 5 decision bound, perceptual

7 These 17 patients were a subset of 20 PD patients who completed the task
(Filoteo et al., 2005), and were able to complete a follow up evaluation.
8 Additional regression analyses verified that nonlinear information-integration
performance continued to predict cognitive decline even after age, gender, motor
impairment, mood, baseline performance on the MDRS, and performance on the
WCST were taken into account.
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Table 4
Goodness-of-Fit (− ln L) Values from the Final Block of trials for the Cooperation
(Coop) and Competition (Comp) versions of sCOVIS for Application 2.

Participant PD
Cooperation Competition

1 58.20 64.07
2 20.41 24.51
3 42.31 44.07
4 58.87 65.13
5 62.81 65.41
6 50.64 51.84
7 58.99 61.83
8 25.63 33.18
9 59.41 65.49
10 12.23 38.04
11 45.62 50.73
12 35.31 36.89
13 38.35 38.44
14 27.36 32.62
15 64.16 66.81
16 60.30 67.02
17 39.70 35.54

and criterial noise) procedural-based models, a unidimensional
length hypothesis-testing model (2 parameters; length criterion
and perceptual noise), a unidimensional orientation hypothesis-
testing model (2 parameters; orientation criterion and perceptual
noise), and a conjunctive model that assumes ‘‘A’’ responses to
long shallow angled lines and ‘‘B’’ responses to all other stimuli
(3 parameters; length criterion, orientation criterion, and percep-
tual noise) to the 6th block of data.9
As expected from Application 1, we found that the sub-optimal

quadratic procedural-based model provided a significantly better
fit to the data than the optimal model for 15 of 17 PD patients
(based on G2 tests with a p < .05 level of significance). In addition,
we found that the conjunctive model provided a significantly
better fit to the data than either unidimensional model for 14
of 17 PD patients (based on G2 tests with a p < .05 level of
significance). Thus, we examined a competitive and cooperative
version of sCOVIS that assumed a quadratic procedural-based
strategy and a conjunctive hypothesis-testing strategy.
Much like we found in Application 1, we found strong support

for the cooperation version of the model over the competition
version based on direct comparisons of the goodness-of-fit
measure, with 16 of the 17 patients (p < .001 based on a sign test)
being better fit by the cooperationmodel (see Table 4 for goodness-
of-fit values). In addition, we found that the cooperation version
of the model provided a significant improvement in fit over the
quadratic and conjunctive single system models for 11 of the 17
patients (based on G2 tests with a p < .05 level of significance).
The average hypothesis-testing systemweightwas .51 (s.e.= .055)
which is very similar to the .46 observed in Application 1.
As outlined above, Filoteo and Maddox (2007) showed that

a stepwise regression that attempted to predict the change in
MDRS scores from accuracy and a binary variable (coded as a 1
if a hypothesis-testing decision bound model provided the best
account of the data or 2 if a procedural based decision bound
model provided the best account of the data), accounted for
61% of the variance in cognitive decline from accuracy, and a
significant additional 15% of the variance in cognitive decline from
the binary model-based variable. In an attempt to model our
approach after theirs, we created a binary variable that was coded
as a 1 if the system weight on the hypothesis-testing system was
greater than .50 (suggesting greater reliance on the output of the

9 The bi-linear model used in Application 1 is not relevant here because the only
valid dimensionalization of these data is length and orientation.
hypothesis-testing system on each trial and less reliance on the
procedural system) and was coded as a 2 if the system weight on
the hypothesis-testing system was less than .50 (suggesting less
reliance on the output of the hypothesis-testing system on each
trial and more reliance on the procedural system).
We conducted the same stepwise regression and found that

the sCOVIS binary system weight variable predicted a significant
additional 11% of the variance in cognitive decline above and
beyond that predicted from the accuracy measure with those
having a hypothesis-testing system weight that was greater than
0.5 showing greater cognitive decline. Thus, using a single category
learning task and the sCOVIS framework, we were able to predict
72% of the total variance associatedwith future cognitive decline in
a nondemented PD sample after amean follow-up of just 1.6 years.
These results clearly establish the clinical utility for the use of
quantitative modeling for a better prediction of global cognitive
decline in nondemented PD patients.

4.1. Brief summary

The aim of Application 2 was to apply the sCOVIS framework
to the important task of predicting cognitive decline. Filoteo,
Maddox, Salmon et al. (2007) found that performance on a
nonlinear information-integration task predicted 61% of the
variance in PD patients’ cognitive decline over a 1.6 year period
as measured by the MDRS. In this section, we applied the sCOVIS
framework to the same data and found (a) that the sCOVIS
model provided a significantly better account of the data than
the single system decision bound models for 11 of 17 (65%)
patients, and (b) that including a variable based on the estimated
hypothesis-testing system weight from the model accounted for a
significant additional 11% of the variance in PD patients’ MDRS-
based cognitive decline. Filoteo and Maddox (2007) found that
classifying patients as hypothesis-testers or procedural-based
classifiers based on fits of the single-systemdecision boundmodels
accounted for slightly more of the variance (15%) in cognitive
decline. Although it may seem that the additional 11% predicted
from the sCOVIS framework is less than the 15% predicted from
the decision bound framework, this difference is not significant.
In addition, it is important to note that the sCOVIS framework
provides a much better account of individual participant’s data,
and perhapsmost importantly, comes from amore psychologically
and neurally plausible model.

5. Summary and conclusions

A thorough understanding of the cognitive deficits in patients
with brain dysfunction is critical for the development of therapies
and interventions designed to improve these individuals’ quality of
life. Computational modeling approaches have been successfully
applied to the study of healthy (college age) adults’ cognitive
functioning, andmany important advances have beenmade. There
has been a growing interest in applying thesemodeling techniques
to the study of cognitive processes in clinical populations.
In this articlewe develop a newmodeling approach and apply it

to classification learning in patients with striatal dysfunction. The
model can be thought of as intermediate between decision bound
models that assume that a fixed hypothesis-testing or procedural-
based strategy is applied on each trial in a block of trials, and a
multiple system model (dCOVIS) that assumes that hypothesis-
testing and procedural-based subsystems are active on each trial
and that the parameters that govern inter- and intra-system
processing can change on a trial by trial basis. The new model,
referred to as the sCOVIS model, assumes that hypothesis-testing
and procedural-based subsystems are active on each trial, but that
the parameters that govern behavior of the systemare fixed (static)



W.T. Maddox et al. / Journal of Mathematical Psychology 54 (2010) 109–122 119
within a block of trials. We reiterate that we believe that category
learning is a dynamic process and in that sense dCOVIS is a more
psychologically plausible model. That said, as the participant gains
experience with the task the dCOVIS parameter values tend to
settle and thusmay bemore closely reflected in the block-by-block
parameter estimates from sCOVIS (Ashby et al., 1998). Of course, a
thorough empirical or simulation based comparison is in order to
fully understand the practical similarities and differences between
the two models.
We applied competition and cooperation versions of sCOVIS

to nonlinear information-integration performance in PD and HD
patients. There was strong support for the cooperation version of
the model for both patient groups and their associated controls. To
our knowledge this is the first ever attempt to directly compare
these two decision rules within the framework of COVIS. In that
sense, we need to be cautious in drawing any strong inference.
Clearly, much more work is needed. Even so, these data suggest
that the output of the two systems work in concert and do not
compete to produce a categorization response. Futurework should
examine the nature of this cooperation.
In Application 1, we showed that the locus of HD patients’

nonlinear information-integration deficits was in their increased
reliance on the sub-optimal hypothesis-testing system, whereas
the locus of PD patients’ deficit was in the application of
a sub-optimal quadratic decision bound. In Application 2, we
showed that the weight on the hypothesis-testing subsystem
accounted for a significant amount of the variance in global
cognitive decline in non-demented PD patients above and beyond
that predicted from non-linear information-integration accuracy.
Importantly, the accuracy and model indices accounted for 72%
of the total variance associated with cognitive decline in this
sample. In contrast, regression analyses that included accuracy
and performance measures from theWCST showed that the WCST
did not account for any significant additional variance above and
beyond that predicted from accuracy alone.
In summary, it is an exciting time to be involved in clinical sci-

ence and assessment. Technological advances such as brain imag-
ing, and the application of computationalmodeling approaches are
already yielding numerous positive outcomes. Our hope in this ar-
ticle is to offer a relatively simple computational modeling tech-
nique that can be used as a window onto cognitive process in
classification.
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Appendix A. Decision bound models applied in Application 1

The probability of responding A, P(RA|x) is given in Eq. (5) in the
text. Themean and variance depend upon the formof the h(xp) and
is derived below for the models utilized in Application 1.

A.1. Suboptimal quadratic procedural-based model

In this model the decision bound, h(xp) is quadratic. With two
perceptual dimensions x and y, every quadratic bound satisfies

h(x, y) = a1x2 + a2y2 + a3xy+ b1x+ b2y+ co = 0 (A.1)

with constants a1, a2, a3, b1, b2, and c0. Eq. (A.1) can be rewritten in
vector notation as

h(x) = x′Ax+ b′x+ co = 0. (A.2)
Ashby and Maddox (1993) show that the mean and variance of
h(xp) are equal to

µh(x) = trace(AΣp)+ x′Ax+ b′x+ co (A.3)
and

σ 2h(x) = 2 trace(A6p)
2
+ (b+ 2Ax)′6p(b+ 2Ax). (A.4)

Thus, the probability of responding A, P(RA|x) for each stimulus x
can be approximated by Eq. (5) with µh(x) and σ 2h(x) given in Eqs.
(A.3) and (A.4). The probability is approximate because h(xp) is
only approximately normally distributed when h(x) is quadratic.

A.2. Optimal quadratic procedural-based model

The optimal quadratic procedural-based model is a special case
of the sub-optimal quadratic procedural-based model with
A = 1/2(6−1A − 6

−1
B ),

b′ = µ′B6
−1
B − µ′A6

−1
A ,

and
c0 = 1/2[µ′A6

−1
A µA − µ′B6

−1
B µB + ln(|6A|/|6B|)].

A.3. Unidimensional horizontal length hypothesis-testing model

Theunidimensional horizontal lengthhypothesis-testingmodel
assumes that the participant sets a criterion on the horizontal
length dimension and gives one response to ‘‘short’’ horizontal
lines and another response to ‘‘long’’ horizontal lines. In this case
the decision bound is linear, and thus Eq. (5) applies directly. In ad-
dition, because the decision bound is parallel with the coordinate
axis, Eq. (5) can be simplified to
P(RA|x) = Φ[(x− xo)/σp],
where xo denotes the decision criterion that separates ‘‘short’’ from
‘‘long’’ horizontal lines.

A.4. Unidimensional vertical length hypothesis-testing model

This model is identical to the unidimensional horizontal length
hypothesis-testing model except that the criterion is set on the
vertical line length dimension (y). Thus the decision rule becomes
P(RA|x) = Φ[(y− yo)/σp],
where yo denotes the decision criterion that separates ‘‘short’’ from
‘‘long’’ vertical lines.

A.5. Equal line length bi-linear hypothesis-testing model

This model assumes that there are two linear decision bounds.
When the decision bound is linear, Eq. (A.2) reduces to

h(x) = b′x+ co = 0 (A.5)
with mean and variance equal to

µh(x) = +b′x+ co (A.6)
and

σ 2h(x) = b′6pb. (A.7)
As outlined in the text, this model assumes that there are two

linear decision bounds with a slope of 1. Thus, Eq. (5) along with
A5–A7 would be applied separately for each stimulus, x, under
the constraint that the slope is 1 and the intercept is positive for
one of the linear decision bounds, and is negative for the other
decision bound. The ‘‘A’’ response region is associated with the
area between the two linear decision bounds. Thus to determine
the probability of responding ‘‘A’’ we estimate the probability of
responding ‘‘A’’ for the linear decision bound with slope 1 and a
positive intercept and subtract the probability of responding ‘‘A’’
for the linear decision boundwith slope 1 and a negative intercept.
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Appendix B. Decision bound models applied in Application 2

The decision bound models utilized in Application 1 were also
utilized in Application 2 with the exception of the bilinear model
that was replaced with a conjunctive rule based model.

B.1. Conjunctive hypothesis-testing model

The conjunctive hypothesis-testing model assumes that the
participant sets a criterion on line length and on orientation
giving one response to long/shallow orientation items and the
other response to all other items. This model can be derived
by combining the decision rule for the two uni-dimensional
hypothesis-testing models. Thus, for this model Eq. (5) can be
written as

P(RA|x) = Φ[(x− xo)/σp]Φ[(y− yo)/σp],

where xo denotes the decision criterion that separates ‘‘short’’ from
‘‘long’’ horizontal lines, and yo denotes the decision criterion that
separates ‘‘shallow’’ from ‘‘steep’’ horizontal lines.

Appendix C. Goodness-of-Fit

Each of these models was fit separately to the six 100-
trial blocks of data separately for each participant. The model
parameters were estimated using maximum likelihood (Ashby,
1992b; Wickens, 1992). When the models had the same number
of parameters, log likelihood valueswere compared directly.When
modelswere nestedG2 likelihood ratio testswere use to determine
the best model. When the models were not nested, AIC was used.
The AIC goodness-of-fit statistic was:

AIC = 2r − 2 ln L,

where r is the number of free parameters and L is the likelihood
of the model given the data (Akaike, 1974; Takane & Shibayama,
1992). The AIC statistic penalizes amodel for extra free parameters
in such a way that the smaller the AIC, the closer a model is to the
‘‘truemodel’’, regardless of the number of free parameters. Thus, to
find the best model among a given set of competitors, one simply
computes an AIC value for each model, and chooses the model
associated with the smallest AIC value.
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