
Humans live in a world of categories, rather than unique 
instances. Categories divide the world into meaningful 
pieces. Humans categorize in order to reach cognitive 
economy of memory, to communicate and understand, 
and to explain and predict properties and actions of new 
stimuli on the basis of older experiences. Because cat-
egorization is essential for higher level cognition, much 
attention in cognitive research has been paid to category 
learning (see, e.g., Ashby & Maddox, 2005; Estes, 1994; 
Kruschke, 1992; Love, Medin, & Gureckis, 2004; Medin 
& Schaffer, 1978; Nosofsky, 1986).

A large and growing body of research suggests that par-
ticipants have available multiple processing modes that 
can be used during categorization. Well established in the 
literature is a distinction between categorization accord-
ing to a rule and categorization based on overall similarity 
(Allen & Brooks, 1991; Erickson & Kruschke, 1998; Fol-
stein & Van Petten, 2004; Kemler Nelson, 1984; Nosofsky, 
Palmeri, & McKinley, 1994; Regehr & Brooks, 1993). 
Building upon this work on multiple processing modes is 
a recent interest in understanding the neurobiological un-
derpinnings of category learning and examining the pos-
sibility of multiple systems of category learning (Ashby, 
Alfonso-Reese, Turken, & Waldron, 1998; Poldrack, Prab-
hakaran, Seger, & Gabrieli, 1999; Reber, Stark, & Squire, 
1998; E. E. Smith, Patalano, & Jonides, 1998; for reviews, 

see Kéri, 2003, and Maddox & Ashby, 2004). Relevant to 
this work are studies of multiple memory systems (Pol-
drack & Packard, 2003; Schacter & Tulving, 1994; Squire, 
1992) and multiple reasoning systems (Sloman, 1996).

One multiple systems model of perceptual category 
learning, and the only one that specifies the underlying 
neurobiology, is the competition between verbal and im-
plicit systems (COVIS) model proposed by Ashby et al. 
(1998; Ashby & Waldron, 2000). COVIS postulates two 
systems that compete throughout learning: an explicit 
hypothesis-testing system, which uses logical reasoning 
and depends on working memory and executive attention, 
and an implicit procedural-learning–based system. (Rela-
tions between COVIS and the multiple process [rule vs. 
overall similarity] approach are reserved for the General 
Discussion section.)

At the implementation level, the explicit hypothesis-
testing and the implicit procedural-learning systems have 
distinct but partially overlapping neurobiological under-
pinnings. The key neural structures for the  hypothesis-
testing system are the prefrontal cortex, the anterior 
cingulate, and the head of the caudate nucleus. The key 
neural structures for the procedural-learning system are the 
inferotemporal cortex and the tail of the caudate nucleus. 
A dopamine-mediated reward signal from the substantia 
nigra is critical for learning in this system. Both systems 
attempt to acquire and solve every categorization task en-
countered. However, the relative weight of each system in 
the category judgment depends on the relative success of 
each system in category learning, which, in turn, depends 
on the type of category structure to be acquired.

The hypothesis-testing system searches for and ap-
plies explicit rules that are typically easy to verbalize (the 
hypothesis-testing system is often called verbal, although 
such a description may not be appropriate in all cases 
and is not appropriate for nonhumans). One example is 
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a unidimensional (UD) rule that allows categorization on 
the basis of a criterion along a single separable stimulus 
dimension. For example, if the stimulus is a Gabor patch 
(a sinusoidal luminance grating windowed by a Gaussian 
envelope) that varies across trials in spatial frequency and 
spatial orientation, one UD rule may be “respond A if the 
spatial frequency is low and respond B if the spatial fre-
quency is high.” Category structures for which the optimal 
rule is likely to be explicitly verbalized as a categorization 
strategy by a responder are called rule based.

The implicit procedural-learning–based system learns 
to associate a category response with a region of percep-
tual space without deriving any explicit rule. Stimuli are 
represented perceptually in higher order visual areas, such 
as the inferotemporal (IT) cortex. It is well established that 
there is a many-to-one convergence of IT cells onto each 
cell in the tail of the caudate (Wilson, 1995). The striatum 
learns to associate subregions in the perceptual space with 
category assignments (Packard & Knowlton, 2002). Cat-
egory structures acquired by the implicit system may be 
very complex (see, e.g., Ashby & Maddox, 1992, 2005). 
The categorization rule typically combines two or more 
stimulus dimensions expressed in different units. Such a 
rule may be “respond A if the spatial frequency is greater 
than the spatial orientation; otherwise, respond B.” A per-
son that categorizes according to such a rule is not likely 
to be able to verbalize it in this form, because it compares 
values expressed in different units and, thus, is not easy 
to comprehend logically. We say that the optimal rule is 
not verbalizable. Category structures in which the optimal 
rule is of this form are called information integration.1

As a consequence of the proposed underlying neurobi-
ology, the nature of the feedback and response mapping 
should affect the implicit procedural-learning–based sys-
tem but not the hypothesis testing system and, thus, should 
affect information-integration (II) but not rule-based (RB) 
category learning. Indeed, several studies have reported 
results consistent with this prediction (Ashby, Queller, & 
Berretty, 1999; Maddox, Ashby, & Bohil, 2003; Maddox, 
Bohil, & Ing, 2004; Maddox & Ing, 2005). On the other 
hand, working memory load should affect the explicit 
 hypothesis-testing system but not the implicit procedural-
learning–based system and, thus, should affect RB but not 
II category learning. Waldron and Ashby (2001) found sup-
port for this prediction with a working memory–demand-
ing dual task. Specifically, they found a large dual-task in-
terference on UD rule-based category learning but only a 
small dual-task interference on (multidimensional) II cate-
gory learning when a small number of highly discriminable 
binary-value dimension stimuli were used.

The goal of the present research was twofold. First and 
foremost, we wished to test the generality of Waldron and 
Ashby’s (2001) results when applied to a unidimensional 
rule-based and a (two-dimensional) information-integration 
category-learning task, using a large number of perceptually 
similar continuous-value dimension stimuli—that is, Gabor 
patches that varied across trials in spatial frequency and 
spatial orientation. Stimuli of this sort have been used ex-
tensively to study category learning (see Maddox & Ashby, 

2004, for a review). Second, we explored the dual-task inter-
ference phenomenon in more detail and provided a critical 
test of Nosofsky and Kruschke’s (2002; see also Ashby & 
Ell, 2002) single-system explanation of the original Wal-
dron and Ashby results by examining two-dimensional, 
conjunctive rule-based category learning in a dual-task 
setting.

In the next sections, we will briefly review a number 
of empirical studies in which a priori predictions from 
COVIS have been tested and will provide a more detailed 
review of Waldron and Ashby (2001). Then we will present 
the results from two experiments. We will conclude with 
some general comments that will include a discussion of 
alternative approaches to categorization and how they may 
or may not account for the experimental results.

Brief Review of COVIS and the Dissociation 
Studies

COVIS assumes that, regardless of the nature of the cate-
gory structures (i.e., rule based or information integration), 
both the hypothesis-testing system and the  procedural-
 learning system attempt to learn. The two systems then 
compete to determine the response. COVIS assumes an 
initial bias for the explicit system. If an explicit rule ex-
ists that yields good performance, the hypothesis- testing 
system is likely to be successful and dominate the implicit 
system. If no such explicit rule exists, the  hypothesis-
 testing system will continuously fail to discover the cor-
rect rule, and the implicit system will eventually domi-
nate. To study the properties of each system, different 
category structures are therefore used: a rule-based cat-
egory structure for studying the explicit system and an 
information-integration category structure for studying the 
implicit system.

Evidence that multiple processes are involved in cat-
egory learning has come from a number of sources (see 
Maddox & Ashby, 2004, for a review). Several experiments 
have shown that II, but not RB, category learning may be 
disrupted by feedback or instruction manipulation. First, 
category learning is qualitatively different with trial-by-
trial feedback than it is without feedback. Without super-
vision, people typically use simple unidimensional rules 
(Ashby et al., 1999), whereas with trial-by-trial feedback 
they are able to learn complex nonlinear decision bounds 
that are difficult to describe verbally (Ashby & Maddox, 
1992). Second, when the feedback is delayed, processing 
in the implicit system is affected, so that learning of an II 
category structure may be impossible (Maddox, Ashby, 
& Bohil, 2003; Maddox & Ing, 2005). Third, in most ex-
periments, consistent stimulus–response mappings have 
been used. For example, when a stimulus is presented, the 
participant is asked to press Button A with the left hand 
and Button B with the right hand (A–B training). Mad-
dox, Bohil, and Ing (2004; see also Ashby, Ell, & Waldron, 
2003) used a variable stimulus–response mapping. The 
participants were asked to press either a yes button or a 
no button to a stimulus in response to a question “Is this 
an A?” or “Is this a B?” (yes–no training). As is predicted 
by COVIS, yes–no training impaired II category learning, 
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as compared with A–B training, but had no effect on RB 
category learning.

The previous studies show that the implicit system dif-
fers from the hypothesis-testing system in that it requires 
immediate feedback and a consistent stimulus–response 
mapping. When feedback or a consistent stimulus–
response mapping is not provided, learning by the implicit 
system is adversely affected. COVIS postulates that this is 
due to the fact that learning in the implicit system is dopa-
mine mediated. Positive feedback induces dopamine to be 
released from the substantia nigra into the tail of the cau-
date nucleus, strengthening recently activated synapses. 
When the feedback is not provided or is substantially de-
layed, synaptic activation within the striatum decays, and 
learning does not occur (Arbuthnott, Ingham, & Wickens, 
2000; Kerr & Wickens, 2001).

One may argue that the disruption of information-
 integration category learning, but not of rule-based learn-
ing, is due to differences in the complexity and, therefore, 
to the difficulty of simple (e.g., one-dimensional) verbal-
izable rules in the RB condition versus complex (multi-
dimensional) nonverbalizable integration rules in the II 
condition.2 To provide evidence for the existence of two 
alternative systems, double dissociation should be dem-
onstrated. Recent studies have introduced manipulations 
that impair RB category learning but not II category learn-
ing (Maddox, Ashby, Ing, & Pickering, 2004; Maddox, 
Filoteo, Hejl, & Ing, 2004). Waldron and Ashby (2001) 
provided empirical evidence of that kind by introducing 
a second task that was to be performed concurrently with 
category learning.

Review of Waldron and Ashby (2001)
Recall that COVIS postulates that the hypothesis-testing 

system relies on working memory and selective attention 
to solve rule-based category tasks, whereas learning in 
the procedural-learning system is essentially automatic. 
Waldron and Ashby (2001) provided an empirical test of 
this prediction by comparing rule-based and  information-
 integration category learning under dual-task conditions 
with that in a single-task control. They chose a numerical 
analogue of the Stroop task (for a detailed review of the 
Stroop task, see MacLeod, 1991) to serve as a dual task. 
The Stroop task is known to require working memory and 
selective attention and to strongly activate the anterior cin-
gulate and prefrontal cortex (Bench et al., 1993), neural 
structures associated with the explicit hypothesis-testing 
system, but not with the implicit procedural-learning sys-
tem proposed in COVIS.

Waldron and Ashby (2001) had participants learn to cat-
egorize colored geometric figures presented on a colored 
background that varied on four binary dimensions. In the 
unidimensional (UD) rule-based condition, one dimen-
sion was relevant, and the remaining three were irrelevant. 
In the  information- integration condition, information from 
three dimensions had to be integrated, and one dimen-
sion could be ignored (see Waldron & Ashby, 2001, for 
details). Under control conditions, the participant simply 
categorized each stimulus on every trial. In the dual-task 

conditions, the participant had to perform a numerical 
analogue of the Stroop task during each trial of categori-
zation. The Stroop task stimulus was presented simultane-
ously with the categorization stimulus for 200 msec. The 
Stroop stimulus was then masked, and the categorization 
stimulus remained on the screen until the participant cat-
egorized it. After categorization feedback, the participant 
was to respond to the Stroop stimulus that he or she had 
seen at the beginning of the trial. Therefore, the partici-
pant was required to hold a representation of the Stroop 
stimulus in working memory during the process of catego-
rization. Performance in the Stroop task was emphasized 
over that in the categorization task.

Waldron and Ashby (2001) found that the dual task pro-
duced greater interference for the UD rule-based task than 
for the II task. These findings support the COVIS predic-
tion that a dual working memory task impairs rule-based 
but not  information- integration category learning and 
argues against the complexity arguments offered against 
multiple-systems theories.

EXPERIMENT 1

The main aim of Experiment 1 was to test the gener-
alizability of Waldron and Ashby’s (2001) results in an 
experiment using a large number of unique continuous-
valued dimension stimuli. The stimuli were Gabor patches 
that varied across trials in spatial frequency and spatial 
orientation. UD rule-based and II category learning were 
examined under control and dual Stroop conditions. Scat-
terplots of the stimuli used in the UD rule-based and II 
category-learning conditions are shown in Figure 1, along 
with the optimal decision bound. Each point in the scat-
terplot denotes the spatial frequency and spatial orienta-
tion of a single stimulus. In the UD rule-based condition, 
spatial frequency was relevant and spatial orientation was 
irrelevant, and the optimal rule required the participants 
to respond A when the spatial frequency was low and to 
respond B when the spatial frequency was high. Both di-
mensions were relevant in the II condition. The optimal 
rule required the participants to respond A when the dif-
ference of the value on spatial frequency dimension and 
the value on the spatial orientation dimension was low 
and to respond B when the difference of the values on the 
two dimensions was high. Such a rule is not easy to com-
prehend logically, because it compares values in different 
units. The category discriminabilities (d′) were 4.5 for the 
UD and 10.3 for the II category structures.3

Method
Participants. One hundred seventy students at the University of 

Texas at Austin participated in the experiment in partial fulfillment 
of a class requirement or for pay. All the observers were tested for 
20/20 vision, and no observer completed more than one experimen-
tal condition. Each participant completed one of four experimen-
tal conditions: UD rule-based control (UDC), UD rule-based dual 
Stroop (UDS), II control (IIC), and II dual Stroop (IIS).

Stimuli and Apparatus. The categorization stimuli were Gabor 
patches that varied across trials in spatial frequency and spatial orien-
tation. The experiment used the randomization technique introduced 
by Ashby and Gott (1988). Forty Category A and 40 Category B 
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stimuli from the UD categories were generated by sampling ran-
domly from two bivariate normal distributions. Each random sample 
(x1, x2) was converted to a stimulus by deriving the frequency [ f � 
.25 � (x1/50)] and the orientation [o � x2(π/500)]. The stimuli for 
the II categories were generated by rotating the 80 rule-based stimuli 
clockwise by 45º around the center of the spatial-frequency–spatial-
orientation space and then shifting the spatial frequency and spatial 
orientation by an amount that resulted in the appropriate d′, using 
linear algebra method. The category distribution parameters for both 
structures are listed in Table 1.

Each Gabor patch was generated using MATLAB (MathWorks, 
Natick, MA) routines from the Psychophysics Toolbox (Brainard, 
1997; Pelli, 1997). The size of each stimulus was 200 � 200 pixels, 
covering about 4º of visual angle, and was centered on the com-
puter screen. Following Waldron and Ashby (2001), the Stroop task 
stimuli used in the dual task were two whole numbers sampled with-
out replacement from the range of 2–8. On 85% of the trials, the 
numerically larger number was physically smaller (95 pixels tall vs. 
180 pixels tall). The stimuli were presented on a gray background.

Procedure. Each condition consisted of five 80-trial blocks. In 
the control conditions, the participants were told that there were two 
categories of stimuli and that these were to be learned via corrective 
feedback. On each trial, a categorization stimulus was presented 
on the screen and remained there until the participant categorized 
the stimulus into one of the two categories by pressing either the 
“Z” button with the left hand or the “?” button with the right hand 

on the computer keyboard. Corrective feedback was then provided 
for 1,000 msec, followed by a 1,000-msec delay and a 1,000-msec 
intertrial interval.

In the dual Stroop task conditions, a categorization stimulus was 
presented centered on the screen, with the Stroop task stimuli pre-
sented concurrently to the left and right of the categorization stimu-
lus for 200 msec, followed by a rectangular white mask for another 
200 msec. The categorization stimulus remained on the screen until 
the participant categorized it into one of the two categories by press-
ing “Z” or “?” on the keyboard. The categorization response was 
followed by 1,000 msec of corrective feedback and a 1,000-msec 
blank screen delay. Then either the word “value” or the word “size” 
appeared on the screen. The participant then indicated on which side 
the number with the larger value or larger size was presented. The 
response was followed by 1,000 msec of corrective feedback and a 
1,000-msec intertrial interval. The timing of each trial was identical 
to that used in Waldron and Ashby (2001).

Results
Stroop task performance. Fifty and 45 participants 

completed the UD Stroop task and the II Stroop task 
conditions, respectively. The overall proportion correct 
for the Stroop task was .84. There was no difference in 
Stroop task accuracy between the UDS (M � .831, SE � 
.022) and the IIS (M � .849, SE � .019) groups [t(93) � 
0.582, p � .562], suggesting that the effort and cognitive 
resources allocated to the Stroop task were equal in both 
groups. Fifteen participants in the UDS condition and 13 
participants in the IIS condition did not reach the 80% 
required accuracy minimum on the Stroop task, and their 
data were excluded from further analyses.

Category-learning performance. For each partici-
pant, we computed the proportion correct for each block 
and the overall proportion correct. We began by examin-
ing the shape of the II and UD overall score distributions 
collapsed across control and Stroop task conditions. The dis-
tribution of overall scores for the UD category structure de-
viated significantly from normality [Kolmogorov–Smirnov 
(KS) D(76) � .212, p � .002], whereas the distribution of 
overall scores for the II category structure did not [KS 
D(66) �.097, p � .557]. This pattern held in each block 
as well. To illustrate, histograms of the overall accuracy 
distributions for the UDC and IIC conditions are shown 
in Figure 2. Whereas the II distribution is unimodal and 
close to normal, the UD distribution is bimodal, with one 
modus close to the chance level of accuracy (.5) and an-
other at a much higher level of performance.

Figure 1. Unidimensional rule-based (UD; upper panel) and 
information integration (II; lower panel) category structures used 
in Experiment 1. Open circles denote Category A; filled squares 
denote Category B. The dashed lines represent the optimal deci-
sion bounds.
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Table 1
Category Distribution Parameters for the 

Unidimensional and Information Integration 
Category Structures Used in Experiment 1

Category Structure  μx  μy  σx
2  σy

2  covxy

Unidimensional
 Category A 280 125 75 9,000 0
 Category B 320 125 75 9,000 0
Information integration
 Category A 268 157 4,538 4,538 4,351
 Category B  332 93 4,538 4,538 4,351
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Figure 3 presents the mean accuracy scores (propor-
tions correct) for each group. The experimental hypoth-
esis predicts that the dual task will have a bigger impact 
on UD rule-based than on II category learning. Assess-
ing the effect of the dual task on underlying distributions 
with such different shapes provided a challenge, since 
the ANOVA, like most standard statistical methods, as-
sumes normal distributions with equal variance. We used 
a bootstrapping4 procedure to compare the drop in mean 
performance across the control and Stroop conditions, to 
determine whether this drop was larger for the UD than 
for the II category structures. Specifically, the test was 
designed to verify that the 95% confidence interval for 
the difference in performance drops [(UDC � UDS) � 
(IIC � IIS)] was reliably bigger than zero. We found that 
the 15.2% drop in overall performance in the UD rule-
based category learning dual task, relative to the control 
task, was reliably bigger than the 6.1% drop in the overall 
performance observed in the II dual task, relative to the 
control task.5

We found a substantial drop in mean performance for 
the Stroop task condition, relative to the control condition, 
for UD rule-based category learning but a smaller drop 
for II category learning. We were interested in examin-
ing the effect that the Stroop task had on the distribution 
of scores—whether it was a shift in the peaks of the two 
modes or a change in the shape. To address this issue, 
we computed the index of asymmetry (skewness) of the 
overall accuracy distribution for each group. The results 

are shown in Figure 4. The UD rule-based control group 
is significantly skewed negative, suggesting that the ma-
jority of the participants are in the high-accuracy modus, 
with a few participants doing poorly on the task. Under 
the dual Stroop task condition, the distribution of scores 
became significantly skewed positive, suggesting that the 
majority of the participants are in the chance modus, with 
a few participants learning the task well. The distribution 
of scores in the II category-learning condition was sym-
metrical for both control and dual Stroop task groups, sug-
gesting that the distribution shifted slightly to the left but 
did not substantially change the shape.

Discussion
Experiment 1 yielded several interesting results. First 

and foremost, including the dual Stoop task had a large ef-
fect on UD rule-based, but not II, category learning. This 
finding replicates that observed in Waldron and Ashby 
(2001) and extends it to a situation in which a large num-
ber of normally distributed continuous-valued dimension 
stimuli were used, providing further support for COVIS. 
Importantly, this pattern holds even though performance 
was best in the UD control condition and worst in the 
UD Stroop condition, ruling out a complexity explana-
tion of the results. Second, the results suggested that UD 
rule-based category learning (under control and dual-task 
conditions) differs qualitatively from II category learning. 
Specifically, whereas the distribution of scores observed 
in the II conditions was unimodal and close to normal, the 
distribution of scores observed in the rule-based condi-
tions was bimodal, suggesting an all-or-none character to 
category acquisition (for a similar result, see J. D. Smith, 
Minda, & Washburn, 2004).

The qualitative difference in the performance profiles 
across UD rule-based and II conditions is predicted by 
COVIS. Rule-based category learning involves the explicit 
system. In this system, different rules are tested and are 
either accepted or rejected. This system relies on working 
memory and executive attention processes (Ashby et al., 
1998). When the correct categorization rule is identified, 
categorization accuracy improves dramatically. When in-
correct rules are applied, categorization accuracy is often 
near chance, resulting in a bimodal performance distribu-
tion. Information-integration category learning involves 
an implicit procedural learning-based system. The implicit 
system learns gradually, incrementally, and automatically, 
leading to a normal unimodal distribution of scores.

EXPERIMENT 2

One potential weakness of Experiment 1 and Waldron 
and Ashby (2001) is that the number of dimensions rel-
evant for optimal categorization differs across conditions. 
Indeed, as Nosofsky and Kruschke (2002) pointed out, the 
results of Waldron and Ashby are consistent with a single-
system approach that operates on a single exemplar repre-
sentation with normal (control) or limited (Stroop) selec-
tive attention. To elaborate, Nosofsky and Kruschke argued 
that the Stroop task will disrupt ALCOVE’s (Kruschke, 

Figure 2. Distribution of the overall scores (proportions correct) 
for unidimensional control (UDC; upper panel) and information-
integration control (IIC; lower panel) groups. Numbers along the 
abscissa denote the midpoints of the bins, except that the .5 bin 
includes all participants below .55. No participant reached an 
accuracy above .95.
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1992) selective attention learning parameter. Failure to at-
tend to the single relevant dimension in the UD rule-based 
task will cause strong interference, because attending to 
the three irrelevant dimensions will waste vast amounts of 
processing capacity. In the complex, II category structure, 
three dimensions are relevant and only one irrelevant, and 
thus a wide variety of attentional weights will lead to rea-
sonable performance and only a little processing capacity 
is wasted on the one irrelevant dimension.

Ashby and Ell (2002) demonstrated that ALCOVE, al-
though able to account for the qualitative pattern found 
in Waldron and Ashby (2001), could not account for the 
quantitative pattern. ALCOVE either underestimates the 
observed difference between UD control and II control 
category learning, or assumes no attention learning in the 
Stroop task condition (leading the participants in the UD 
Stroop task condition to be unaware that a single dimen-
sion was relevant).

Although a number of previous studies provided suf-
ficient evidence for the existence of at least two modes of 
category learning and resulting category representations 
(Kemler Nelson, 1984; Seger & Cincotta, 2002; Shanks 
& St. John, 1994; E. E. Smith et al., 1998; J. D. Smith 
& Shapiro, 1989), we decided to investigate the notion 
of Nosofsky and Kruschke (2002), using a conjunctive 
rule-based category structure in which both dimensions 
were relevant for optimal categorization (see the Method 
section for details). Nosofsky and Kruschke would predict 
no or very little dual-task interference, because no dimen-
sion is irrelevant in this task and a wide range of atten-
tional weights provides a high level of performance. Also, 
because the attention learning mechanism is disrupted, 
attention will be spread over both dimensions throughout 

the course of learning. COVIS, however, would predict 
stronger dual-task interference, because the conjunctive 
task, unlike the II task, is solved under control condition 
by the hypothesis-testing system. Under the dual Stroop 
task condition, use of conjunctive rules (attending to both 
dimensions) is less likely, and use of suboptimal UD rules 
(selective attention to one dimension while ignoring the 
other) is more likely, because conjunctive rules require 
more working memory capacity than do UD rules. The 
aim of Experiment 2 was to provide a test of these two 
alternatives.

Figure 3. Mean categorization block accuracies (proportion correct) 
for each group in Experiment 1. The control groups are denoted with 
solid lines and filled marks; dual Stroop task groups are denoted with 
broken lines and open marks. Unidimensional rule-based category 
observers are marked with squares; information integration category 
observers are marked with triangles. Error bars denote bootstrapped 
68% confidence intervals (equivalent to standard errors of the mean). 
UDC, unidimensional rule-based control; IIC, information integration 
control; IIS, information integration dual Stroop; UDS, unidimensional 
rule-based Stroop.
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racy scores for each group. Error bars denote 95% confidence 
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Method
Participants. Sixty students at the University of Texas at Aus-

tin participated in the experiment in partial fulfillment of a class 
requirement or for pay. Thirty completed the conjunctive control 
(CJC) condition, and 30 completed the conjunctive Stroop task 
(CJS) condition. All the participants were tested for 20/20 vision.

Stimuli and Apparatus. The stimuli, stimulus generation pro-
cedure, and apparatus were identical to those used in Experiment 1. 
The only difference was in the nature of the category structures. 
Eighty stimuli were generated by sampling randomly from four bi-
variate normal distributions. Three were assigned to Category A and 
one to Category B. The four distribution parameters and the number 
of stimuli generated from each are displayed in Table 2. A scatter-
plot of the stimuli and the optimal rule is presented in Figure 5. The 
optimal rule required the participants to respond B when the spatial 
frequency was high and the orientation was steep and to respond A 
otherwise. Note that both dimensions are relevant for correct cat-
egorization. The number of stimuli generated from each distribution 
was chosen to equate the number of stimuli in both categories and in 
an attempt to reduce the usage of UD rules to solve the task.

Procedure. The procedure was identical to that in Experiment 1, 
except that there were four, rather than five, blocks of 80 trials. The 
participants were told that perfect performance was possible and 
that they should certainly achieve above 80% correct before the end 
of training.

Results
Stroop task performance. Mean Stroop task accu-

racy was .862 (SEM � .026). Five participants did not 
reach required 80% Stroop task accuracy, and their data 
were excluded from further analyses.

Categorization task performance. We first inspected 
the distribution of scores in order to compare them with 
those in Experiment 1 (data not shown). Although there 
was a tendency toward bimodality, the KS test did not 
show a significant deviation from normality for either 
condition or when collapsed across control and dual-task 
conditions in any block [KS D(55) � .153, p � .153, for 
the collapsed data and overall score distribution].

Mean categorization accuracy for each block of trials 
is shown in Figure 6. Overall categorization accuracy was 
70.2% in the control group and 60.6% in the Stroop task 
group. Thus, the Stroop task produced a 9.6% drop in cat-
egorization accuracy that was significant [bootstrapped 
95% confidence interval for the drop (CJC � CJS)].

For comparison with Experiment 1, we computed 
asymmetry (skewness) of the distributions in the con-
trol and dual-task groups. The distribution of scores for 
the control group was slightly skewed negative (skew � 
�0.345, nonsignificant; bootstrapped 95% confidence in-

terval, [�0.916; 0.197]), suggesting that there were about 
equal numbers of participants doing well as doing poorly 
on the task. In the dual-task group, the distribution of 
scores was significantly skewed positive (skew � 0.860; 
bootstrapped 95% confidence interval, [0.118; 1.614]), 
suggesting that the majority of participants did poorly on 
the task.

To examine response strategies, we fit conjunctive and 
UD decision bounds to each participant’s responses in the 
last block (the details of these models can be found in 
numerous articles; e.g., Maddox et al., 2003). We found 
that the proportion of participants who used a rule em-
ploying both dimensions (either a conjunctive rule-based 
strategy or a decision based on linear combination of the 
two dimensions’ values) dropped from 77% in the control 
condition to 44% in the dual-task condition and that the 
proportion of participants using a UD rule for categoriza-
tion increased from 7% in the control condition to 17% in 
the dual-task condition.6

Discussion
The results from Experiment 2 supported the COVIS 

prediction that categorization based on the combination 
of both dimensions is less likely and using UD strate-
gies more likely under a dual-task condition than under 
a control condition—a prediction that is opposite of that 
in Nosofsky and Kruschke’s (2002) account of Waldron 
and Ashby’s (2001) results. To compare the observed drop 
in performance in the conjunctive rule-based condition 
with those in Experiment 1, we computed the average 
performance across the first four blocks of trials (since 
Experiment 2 included four, not five, blocks of trials) in 
each condition. The results are displayed in Figure 7. Fig-
ure 7 suggests that the impact of the dual Stroop task was 
indeed larger on conjunctive rule-based than on II cat-
egory learning, a result that is predicted by COVIS and is 
opposite that predicted by Nosofsky and Kruschke.

Both the shape of the score distributions and the skew-
ness values from the conjunctive task were intermediate 

Table 2
Four Distribution Parameters and the Number of Stimuli 

Derived From Each Distribution for the Conjunctive Category 
Structure Used in Experiment 2

 Distribution  μx  μy  σ2  covxy  N  

A1 283 98 75 0 8
A2 317 98 75 0 16
A3 283 152 75 0 16

 B  317 152 75  0  40 

Note—Stimuli from the A1, A2, and A3 distributions were all members 
of Category A.

Figure 5. Conjunctive (CJ) category structure used in Experi-
ment 2. Open circles denote Category A; filled squares denote 
Category B. The dashed line represents the optimal decision 
bound.
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between those found in Experiment 1, suggesting that a 
number of strategies may be used to resolve the conjunc-
tive task and each of these strategies may be influenced by 
the dual task differently. Detailed discussion of the dual-
task interference for the three category structures exam-
ined in this article is reserved for the General Discussion 
section.

GENERAL DISCUSSION

The theoretical framework that gave rise to the experi-
ments reported in this article was the COVIS model of 
category learning. COVIS builds upon a body of research 
that has identified alternative strategies of category learn-
ing and has extended it by identifying the underlying neu-
rostructures. This line of research contrasts with theories 
in which a single system of category learning is assumed. 
In this discussion, we will first focus on the COVIS ac-
count of the observed pattern of data, then will review 
alternative multiple-system approaches to categorization, 
and finally will ask whether a single-system approach to 
categorization may be sufficient to account for the results 
observed here and elsewhere.

COVIS
COVIS assumes the existence of at least two category-

learning systems: an initially favored hypothesis-testing 
system that seeks explicit rules and relies on working 
memory and selective attention and an implicit system 
that is procedural-learning based and essentially auto-
matic. Two predictions result from this notion. First, cat-
egory learning by the hypothesis-testing system when a 
simple correct categorization rule exists that yields nearly 
perfect performance (such as our UD rule-based category 
structure) should have an all-or-none character, whereas 
learning by the procedural-learning–based system is grad-
ual and incremental. Second, a dual task requiring limited 

cognitive resources, working memory, and selective at-
tention should impair the hypothesis-testing system, but 
not the II system.

The three category structures used in the two experi-
ments reported in this article differed in their level of at-
tainability by the two systems. UD rule-based category 
learning resulted in a bimodal, all-or-none distribution 
of scores and was affected most by the dual task, sug-
gesting a strong reliance on the hypothesis-testing system 
in solving the task. The UD category structure is indeed 
well acquired by the hypothesis-testing system, because a 
simple rule can yield almost perfect accuracy. However, 
if the correct rule is not found, alternative rules yield 
performance at chance levels of accuracy. The implicit 
procedural-learning–based system may exhibit poor ac-
quisition of such a structure because the variance along 
the relevant dimension is small, whereas the variance 
along the irrelevant dimension is high. The high conver-
gence of connections from the IT cortex to the tail of the 
caudate nucleus may cause the same striatal units to be 
activated by stimuli coming from different categories but 
sharing similar values on the irrelevant dimension, mak-
ing the stimulus–response mapping within the caudate 
difficult. Thus, although this task was easiest under the 
control condition, the need to find the one correct rule 
by the hypothesis-testing system with limited resources 
and unreliable responses from the implicit system made it 
most difficult under the dual-task condition.

A neuroimaging study by Bench et al. (1993) showed 
that the anterior cingulate and frontal cortex are structures 
strongly activated while a Stroop task is performed. The 
fact that the presence of the Stroop task affected UD rule-
based category learning the most provides an empirical 
test of the COVIS proposition that the explicit hypothesis-
testing system, but not the implicit system, relies on work-
ing memory and attentional processes and on these same 
underlying brain structures (i.e., the anterior cingulate and 
the frontal cortex). The dual Stroop task may influence 

Figure 6. Mean block accuracies in the Experiment 2 conjunc-
tive (CJ) category-learning task. The control group (CJC) is de-
noted with a solid line and filled diamonds; the dual Stroop task 
group (CJS) is denoted with a broken line and open diamonds. 
Error bars denote bootstrapped 68% confidence intervals (equiv-
alent to standard errors of the mean).
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several stages of the hypothesis-testing system. It may 
make selective attention to the relevant dimension more 
difficult to achieve, because selective attention is needed 
for the Stroop task. Its working memory load may make it 
harder to remember the current rule to be tested and which 
rules did not work previously. It may impair the ability to 
detect conflict and evaluate performance and to select and 
switch to a new rule (anterior cingulate functions).

II category learning was most difficult in the control 
condition but exhibited the smallest decrement in perfor-
mance in the dual-task condition, becoming the easiest. 
The II category structure is better acquired by the implicit 
system than by the hypothesis-testing system. COVIS pre-
dicts that after trying unsuccessfully all salient rules, the 
weight on the hypothesis-testing system decreases, and the 
responses are dominated more often by the implicit sys-
tem, which learns the stimulus–response mapping gradu-
ally and incrementally, yielding a normal distribution of 
scores. The stimulus–response mapping in the caudate is 
facilitated by the larger distance of the stimuli from the 
two categories in the stimulus space (d′ � 10.3, as com-
pared with 4.5 for the UD structure). The dual Stroop task 
may influence II category learning in two opposite ways: 
It may hurt performance because it reduces the cognitive 
resources needed for initially biased hypothesis testing 
and/or slows down the shift of the overall system in favor 
of the implicit system, or it may facilitate performance be-
cause the limited capacity hypothesis-testing system be-
comes less initially biased and/or the overall system shifts 
more quickly toward the implicit system. We found a slight 
performance drop in the dual-task condition, as compared 
with the control condition, suggesting that the first type 
of influence or a combination of both types is more likely. 
Because the implicit system itself is unaffected by the dual 
task, once the weight of that system increases sufficiently, 
accuracy will be expected to be essentially the same under 
the control as under the dual-task condition.

The conjunctive rule-based category structure used in 
Experiment 2 has properties intermediate between those 
structures used in Experiment 1, yielding intermedi-
ate difficulty and performance drop under the two con-
ditions. The optimal conjunctive rule yields the highest 
accuracy (100% possible); however, UD rules on either 
dimension can provide an accuracy of up to 80%, and II 
strategies may be successful as well, due to the relatively 
high separability of the four underlying distributions. The 
proportion of the participants using a combination of 
both dimensions (spreading attentional weights in terms 
of ALCOVE [Kruschke, 1992]) for categorization de-
cision decreased and the proportion of the participants 
using values on a single dimension increased under the 
dual-task condition, contrary to the ALCOVE prediction 
(Nosofsky & Kruschke, 2002) and in agreement with the 
COVIS prediction. Experiment 2’s results also argue for 
dual Stroop task interference on performance evaluation 
and rule switching, in addition to working memory load, 
because the participants were more likely to stick with 
suboptimal UD rules despite corrective feedback.

Rule Versus Similarity
There has been a long tradition in cognitive psychology 

research of focusing on a distinction between perceptual 
categorization that is based on rule application and that 
based on overall similarity to previously seen instances 
(e.g., Allen & Brooks, 1991; Brooks, 1978; Folstein & 
Van Petten, 2004; Kemler Nelson, 1984; J. D. Smith & 
Shapiro, 1989; see also Shanks & St. John, 1994). Rule 
versus similarity distinction provides an alternative theory 
of multiple strategies of categorization. Rule application 
involves a high working memory load and requires ana-
lytic, serial processing of criterial attributes with differ-
ential weighting of attributes, whereas similarity-based 
processing involves a low working memory load and ho-
listic, parallel, automatic processing with equal weighting 
of attributes (E. E. Smith et al., 1998).

The theories assuming alternative strategies of catego-
rization involving qualitatively distinct processes of rule 
application and similarity judgment are strikingly simi-
lar to the computational-level description of the COVIS 
model. Rule application is assumed to involve working 
memory and selective attention to criterial attributes, like 
the explicit hypothesis-testing system. The similarity judg-
ment is an automatic, holistic process that does not have 
a high working memory load, comparable to the implicit 
procedural-learning–based system. A dual task reduces the 
likelihood of using analytical rules in categorization (J. D. 
Smith & Shapiro, 1989).

Rule versus similarity distinction theories would, 
therefore, predict a pattern of results similar to that ob-
tained here, because the holistic strategies promoted over 
the analytic strategies under the dual task have differ-
ent relative utilities for correct categorization. However, 
direct application of these theories to the results of our 
two experiments is complicated by the dissimilarity of 
the experimental paradigms. In experiments illustrating 
the dissociation between rules and similarity, a unitary 
category structure has often been used in which category 
membership could be determined perfectly from rule ap-
plication or similarity-based processes and induction of 
either process was achieved by instruction manipulation 
(e.g., explicit formulation of the rule vs. feedback train-
ing only, in Allen & Brooks, 1991). Alternatively, real-
world categories have been used for which the existence or 
nonexistence of necessary attributes (rules) was known to 
the participants (e.g., size of a quarter, in Rips, 1989). In 
our experiments, the participants had no prior knowledge 
about the nature of the category structure, and training 
was based only on feedback for all the category structures. 
The category structures themselves, rather than instruc-
tion or prior knowledge, promoted or inhibited the use of 
either system. The processes of rule discovery and testing 
are of equal importance to rule application in the COVIS 
model, and the interaction and relative weighting of the 
two systems is explicitly stated. On the other hand, stud-
ies in which use of a rule versus a similarity judgment is 
addressed in conditions in which both strategies are avail-
able on any given trial may help to shed more light on 
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how the competition between the hypothesis-testing and 
the implicit systems is resolved. Also, although the rule 
versus similarity distinction may be widely valid across 
modalities and extend to higher level cognition, such as 
language, COVIS has a narrower focus on visual percep-
tual categorization and, because of the specified underly-
ing neurobiology, cannot be automatically applied outside 
its original domain. In sum, despite some methodological 
and terminological differences, the neuropsychological 
COVIS model and the cognitive-psychology–based theo-
ries of alternative rule and similarity strategies of catego-
rization are more likely to complement than to oppose one 
another.

Single System Versus Multiple Systems 
in Category Learning

The alternative to the notion of multiple systems in cat-
egorization is the notion of a single categorization sys-
tem. First we have to make clear what a system means. In 
COVIS, the two category-learning systems operating in 
parallel differ in both the computational and the imple-
mentation levels of description—one system coding for 
explicit rules in frontal structures using selective atten-
tion and working memory, the other encoding instances 
in the IT cortex and procedural-learning–based stimulus–
response mapping in the striatum (see the introduction or 
Ashby et al., 1998, for more details). Both systems then 
compete (or cooperate) to determine the response of the 
overall system (the organism). When arguing against the 
multiple-system account of Waldron and Ashby’s (2001) 
results, Nosofsky and Kruschke (2002) accepted that 
other processes, such as selective attention to the relevant 
dimension, may take place in category learning. How-
ever, they emphasized that different processes operate on 
a single exemplar category representation. What seems 
to be a distinction between categorization based on a rule 
application and that based on overall similarity evaluation 
is, then, a distinction between exemplar-based categoriza-
tion when all attention weight is on one diagnostic dimen-
sion and the same exemplar-based categorization when 
attention weight is spread about equally across many 
dimensions. A similar idea has recently been presented 
by Pothos (2005), who argued that rules and similarity 
represent two extremes on a single continuum of similar-
ity operations, with no need to model rule and similar-
ity processes separately. Rule application is a similarity 
evaluation process in which only a single or small number 
of an object’s features are involved.

These are compelling ideas, and the imperative of par-
simony requires accepting the single-system notion (a sin-
gle representation with a single process), unless we have a 
sufficient body of evidence that a single-system explana-
tion cannot account for the empirical data available.

Several lines of evidence lead us to believe that a single-
system explanation is not sufficient to account for the data 
observed in our two experiments and, most important, in 
the complex of a broad range of other studies. First, we 
have already discussed how Nosofsky and Kruschke’s 
(2002) account of Waldron and Ashby (2001) is inconsis-

tent with the results of our Experiment 2 (see also Ashby 
& Ell, 2002, for an evaluation of Nosofsky & Kruschke, 
2002).

Second, single-system models, such as ALCOVE 
(Kruschke, 1992), do not specifically address the under-
lying neural substrate for exemplar storage and the neural 
mechanism of categorization. A number of studies have 
focused on differential activation of the brain in differ-
ent categorization paradigms and have suggested that 
humans, at least, have available more than one system, 
involving different neural circuits and category represen-
tations (Seger & Cincotta, 2002; E. E. Smith et al., 1998; 
see Kéri, 2003, for a review of studies including clinical 
neuropsychology findings, functional neuroimaging, and 
single-cell research). To address specifically the single-
versus multiple-representations issue, Kéri has summa-
rized a number of studies showing that the IT cortex is 
responsible for category instances representation, whereas 
the prefrontal cortex encodes abstract rules. Such a find-
ing supports at least a twofold category representation; 
one is the representation of specific instances (exemplars), 
the other of rules. Because an organism behaves as an in-
tegral system, different representations and processes will 
interact and act in concordance in order to produce mean-
ingful behavior. Pothos’s (2005) putative continuum from 
rules to similarity may thus reflect a relative contribution 
of each system to the overall response of an organism, 
such as that postulated in COVIS by the relative weighing 
of the two subsystems’ responses in producing the final 
decision.

Third, even if a single-system model can account for 
the pattern of data observed in our two experiments, we 
may still question whether that provides us with a valid 
and more parsimonious explanation. First, exemplar mod-
els are often viewed as highly flexible. Recently, Olsson, 
Wennerholm, and Lyxzèn (2004) showed that exemplar and 
other mathematical models often suffer from  overfitting—
that is, accounting perfectly for noise, as well as actual 
variance due to cognitive processes. Second, with respect 
to the issue of parsimony, it is unclear whether a single-
system model that requires different sets of assumptions 
(and parameter values) about the underlying processes to 
account for the wide array of “multiple-systems” data7 is 
more parsimonious than a multiple-systems model that 
a priori predicts the patterns observed in the multiple-
systems data.
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NOTES

1. Using the term implicit for the procedural-learning–based system 
does not imply an unconscious nature for category learning by this 
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system (see Shanks & St. John, 1994, for a discussion of unconscious 
learning). Rather, we mean that the optimal categorization rule charac-
terizing the II category structure is not directly represented in the system 
but is only implicitly present in the stimulus–response mapping within 
striatum. The participants are not likely to be able to express the rule 
explicitly after the training, even when their response strategies suggest 
that they are able to employ such a rule.

2. Some of the studies reported above utilized multidimensional rule-
based tasks that addressed this potential shortcoming and continued to 
show the predicted results (e.g., Maddox et al., 2004; Maddox & Ing, 
2005).

3. These discriminabilities were chosen to avoid ceiling effects in 
the UD conditions and floor effects in the II conditions. In addition, we 
hoped to approximately equate performance across these two category 
structures in the control condition. To anticipate, we were not success-
ful in equating control condition performance. The II control condition 
performance was worse than the UD control condition performance. 
However, if the two conditions differed only in difficulty, as is sometimes 
suggested, we would expect a larger dual-task interference effect on II 
than on UD category learning. COVIS, on the other hand, predicts a 
larger dual-task interference effect on UD category learning.

4. Bootstrap analysis is a statistical method for obtaining an estimate 
of reliability or error, such as confidence intervals, without a priori as-
sumptions about population distribution. The sample distribution and 

variability are used as a model for the population distribution, and simu-
lations carried out on actual samples are used to draw inference. Boot-
strapping is appropriate to use when the distribution shape is unknown 
(Efron, 1993). 

5. The difference between the median drop in performance across the 
two category structures was even stronger. The median performance 
drop for the UD-category observers was 29.0% in the Stroop task condi-
tion, as compared with the control condition, which is reliably bigger 
(bootstrapped 95% confidence interval) than the 6.8% median perfor-
mance drop for the II category observers. The same category structure � 
condition interaction was detected using parametric methods [ANOVA 
interaction, F(1,138) � 4.006, MSe � 0.367, p � .047].

6. The responses of the rest of the participants were best accounted for 
by a random response strategy.

7. For instance, Nosofsky and Kruschke (2002) claim that “as long as 
the sensitivity parameter c is not too high, ALCOVE predicts far greater 
interference on the simple one-dimensional task than on the complex 
three-dimensional task” (p. 171). The c parameter measures the overall 
discriminability of the stimuli and should be high for such highly dis-
criminable stimuli as those used in Waldron and Ashby (2001).

(Manuscript received July 29, 2004;
revision accepted for publication February 28, 2005.)
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