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Exemplar sequencing effects in incidental and intentional unsupervised category learning were investi-
gated to illuminate how people form categories without an external teacher. Stimuli were perfectly
separable into 2 categories based on 1 of 2 dimensions of variation. Sequencing of the first 20 training
stimuli was manipulated. In the blocked condition, 10 Category A stimuli were followed by 10 Category
B stimuli. In the intermixed condition, these 20 stimuli were ordered randomly. Experiment 1 revealed
an interaction between learning mode and sequence, with better intentional learning for intermixed
sequences but better incidental learning for blocked sequences. Experiment 2 showed that manipulating
trial-to-trial variability along each dimension can impact intentional learning. Training sequences that
emphasized variation along the category-relevant dimension resulted in better performance than se-
quences that emphasized variation along the category-irrelevant dimension. The results suggest that
unsupervised category learning is influenced by the mode of learning and the order and nature of
encountered exemplars.
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Categorization is an integral part of cognition. Most category
learning research focuses on supervised categorization (i.e., cate-
gorization that involves external feedback regarding the correct
category label). However, unsupervised category learning—the
ability to discover or invent categories in the environment without
category labels or feedback from an external tutor—may be
equally prevalent in everyday life (e.g., Billman & Heit, 1988).

Unlike supervised categorization that is always intentional, un-
supervised categorization can be intentional or incidental. For
instance, a person who wants to organize her e-mail in-box may
decide to create various folders (categories) and come up with a
criterion (categorization rule) by which she sorts the incoming
messages into these folders. In this case, categorization is unsu-
pervised but intentional: The person decides to create categories
that make the most sense to her and best reflect the structure of her
incoming e-mail. Conversely, a person may also notice or invent
categories incidentally, without a priori intention. A child playing
outdoors may notice the large variability among trees and perhaps
start to distinguish trees into those with needles and those with
leaves. In these cases, categorization is unsupervised and inciden-

tal: The persons created separate categories because they happened
to notice some structure in the environment even when they were
not explicitly looking for any. In this article, we investigate the
understudied topic of unsupervised category learning, with a pri-
mary focus on the mechanism of intentional unsupervised learning.

Unsupervised categorization has been studied under two com-
plementary paradigms. In one tradition, participants are instructed
to sort a set of stimuli into categories of their own choosing, with
no right or wrong answer; the research question is what category
sorts are preferred by the participants under various circumstances
(Colreavy & Lewandowsky, 2008; Medin, Wattenmaker, &
Hampson, 1987; Pothos & Chater, 2002; Regehr & Brooks, 1995).
In a second tradition, an underlying category structure exists, and
the research question is whether participants can discover or match
the underlying category structure in unsupervised learning (Ashby,
Queller, & Berretty, 1999; Love, 2003). The research presented
here is in line with the second tradition and focuses on how
sequencing of exemplars can promote or hinder participants’ abil-
ity to match their categorization choices to the structure of the
environment.

Exemplar Sequencing Effects in Unsupervised
Category Learning

A useful tool for understanding category learning and constrain-
ing its models is studies on the effect of exemplar sequencing.
Sequencing (order) effects have been shown to affect both super-
vised and (incidental) unsupervised learning. Whereas studies of
supervised category learning have primarily addressed how con-
trast of successive stimuli affects the category assignment for the
current stimulus with respect to its usual category assignment
(Jones, Love, & Maddox, 2006; Jones & Sieck, 2003; Stewart,
Brown, & Chater, 2002), studies of unsupervised learning have
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addressed whether the underlying category structure itself can be
learned under particular exemplar sequences (Clapper, 2006; Clap-
per & Bower, 1994, 2002). As we also aim to address category
learnability under unsupervised learning, we first turn to the stud-
ies of unsupervised learning.

An important set of studies that demonstrated large sequence
effects in unsupervised learning was conducted by Clapper and
Bower (Clapper, 2006; Clapper & Bower, 1994, 2002). They
presented participants with exemplars from two feature-
correlation-based conceptual categories. The stimuli varied along
multiple binary dimensions, were highly correlated within a cate-
gory, and formed two perfectly separable categories. Participants
did not notice the underlying category structure when presented
with category exemplars intermixed from the two categories. How-
ever, when presented with a block of exemplars from one category
followed by exemplars from the other category, the category
structure became obvious.

The results of these experiments supported a theory that postu-
lated a surprise-driven category invention mechanism in unsuper-
vised learning. The main idea is that a sequence of stimuli that
belong to one category leads a participant to build a representation
of the stimulus space that matches that of the category. When the
first stimulus from a second category is presented, its values
violate participants’ expectations, and this “surprise” leads to the
construction of a second category.

Clapper and Bower focused on incidental, spontaneous unsu-
pervised category learning. However, the notion of surprise-driven
learning is less meaningful when we consider intentional unsuper-
vised learning. During incidental categorization, a participant has
no reason to form multiple categories unless a large expectation
violation—the surprise—alerts him or her to the possibility of
separate categories. However, it is likely that a participant during
intentional categorization actively searches for any meaningful
distinction in the stimuli and thus expects some stimuli to be
different from others. Interestingly, few studies have examined
intentional unsupervised category learning, and none have exam-
ined exemplar sequence effects. It is reasonable to expect that the
order in which objects are encountered influences intentional un-
supervised learning. However, given that the mechanisms of inci-
dental and intentional unsupervised learning may differ, it is ques-
tionable whether the sequence effects observed in incidental
learning are generalizable to intentional learning.

Overview of Current Studies

The current studies examine the effects of exemplar sequencing
on intentional unsupervised learning to determine how it may
differ from incidental unsupervised learning. Experiments 1A and
1B examine the effects of blocked versus intermixed exemplar
sequencing on intentional and incidental unsupervised category
learning. To anticipate, we found that participants are more likely
to categorize in agreement with the underlying structure when
presented with blocked sequence during incidental learning, but
interestingly, the opposite was true for intentional learning.

Experiment 2 extends previous work on stimulus contrast ef-
fects in supervised learning to intentional unsupervised learning
situations. Stimulus contrast effects demonstrate that a partici-
pant’s tendency to assign the current stimulus to one of two
categories depends upon the category assignment of the previous

stimulus and the perceived dissimilarity between the current and
the previous stimulus (Jones et al., 2006; Jones & Sieck, 2003;
Stewart et al., 2002). We propose that exemplar sequences with
different stimulus contrast characteristics will affect intentional
unsupervised learning.

Experiment 1A

Experiment 1A tested directly whether a blocked exemplar
presentation improves unsupervised learning under intentional
learning conditions, as was previously found under incidental
learning conditions.

Method

Participants. Seventy-one University of Texas at Austin stu-
dents participated in the experiment in partial fulfillment of a
course credit requirement or for pay. All participants were tested
for 20/20, or corrected to 20/20, vision.

Stimuli and apparatus. The stimuli were white lines varying in
length and orientation, presented on a black background centered
on a computer screen. These physical dimensions were chosen
because their perceptual properties are well understood. For ex-
ample, Nosofsky (1985, 1986) used multidimensional scaling tech-
niques and showed that the psychological scaling solutions mir-
rored the physical spacing for length and orientation. In addition,
Nosofsky showed that the two dimensions are independent of each
other and are generally considered to be separable (see also Shep-
ard, 1964). This ensures that the stimulus spacing in the perceptual
space closely matches the physical spacing and that the value
changes along one dimension do not alter the perception of the
other dimension.

We followed the tradition of general recognition theory (Ashby,
1992; Ashby & Townsend, 1986) and represented categories as
normally distributed clusters varying along two perceptual dimen-
sions (see also Fried & Holyoak, 1984). The two categories were
perfectly separable along one perceptual dimension that was bi-
modal, whereas the distribution of stimulus values along the sec-
ond, category-irrelevant dimension was unimodal (see Figure 1).
Stimulus value on the bimodal dimension was thus relevant for
category membership, whereas the value on the unimodal dimen-
sion was irrelevant for category membership. Which physical
dimension (orientation or length of a line stimulus) was the bi-
modal, category-relevant dimension was counterbalanced within
each condition, with length serving as the bimodal dimension for
half the participants and orientation for the other half.

The selected category structure was convenient for two reasons.
As people often prefer unidimensional sorts during unsupervised
categorization (Ahn & Medin, 1992; Ashby et al., 1999; Medin et
al., 1987; Regehr & Brooks, 1995; but see Colreavy & Lewan-
dowsky, 2008), we aimed to use category structure that offered
two possible unidimensional strategies, one matching the under-
lying category structure and the other being orthogonal to it. To
evaluate learning, we determined whether each participant chose to
separate stimuli along the bimodal dimension (matching the un-
derlying category structure) or the unimodal dimension, or used
some other strategy. Second, previous research typically used a
small number of stimuli varying along a few binary-valued dimen-
sions, allowing for only a few testing trials. For example Clapper
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and Bower (1994) used 8, 24, and 13 testing trials in their Exper-
iments 1, 2, and 3, respectively. However, it is possible that
learning may continue with further exposure to the stimuli (Ashby
et al., 1999). The category structure used here offers a large
number of unique stimuli and allows for probing learning both
early and after more extensive exposure.

The stimuli were generated and presented on a computer
screen through Psychophysics toolbox (Brainard, 1997; Pelli,
1997) in MATLAB (MathWorks, Natick, MA). The category
distribution parameters in actual units are listed in Table 1. Line
orientation was constrained to fall between 0° and 90° to avoid
crossing the highly salient cardinal orientations of 0° and 90°
(Zeithamova & Maddox, 2007).

Procedure. Participants were told that they would be pre-
sented with a series of lines that varied across trials in length and
orientation and that each line was a member of one of two
naturally distinct categories. The participants’ task was to discover
this natural distinction. The existence of the underlying category
structure was emphasized by a cash bonus offered to participants
who reached at least 75% accuracy in matching the underlying
categories. Participants were told to press one button on the key-
board every time they saw a member of one category and another
button every time they saw a member of the other category.
Participants were told that it did not matter which button they
associated with which category, but after they had figured out the
nature of the two categories, they should remain consistent in
which label they used for which category.

On each trial, a line was presented and the participant was
prompted to categorize it as either an A or a B stimulus by pressing
the appropriate keyboard button. The stimulus remained on the
computer screen until the participant categorized it, followed by a
1,000-ms blank screen intertrial interval. No feedback was given
throughout the experiment.

The experiment consisted of a 20-trial training phase and a
160-trial testing phase. The selection and sequencing of the train-
ing trials were manipulated across conditions, and the testing phase

was identical across conditions and consisted of 80 A stimuli and
80 B stimuli randomly intermixed. Participants’ categorization
strategy was evaluated both early (i.e., during the first 20 testing
phase trials, testing length comparable to several previous studies)
and across the entire testing phase (i.e., the total of 160 testing
phase trials, to evaluate the effect of more extensive exposure).

Three exemplar sequencing conditions were examined. In the
intermixed condition, the training phase consisted of 10 A and 10
B stimuli that were randomly selected and presented in an inter-
mixed order. Following Clapper & Bower (2002), the presentation
sequence of the stimuli was controlled in the blocked condition, so
that a long streak of stimuli from only one category was presented
before presenting the first stimulus from the other category. Clap-
per and Bower found a similar advantage for the blocked condition
when they presented a block of A stimuli followed by a block of
B stimuli as when they presented a block of A stimuli only. As it
was not obvious whether to expect the same finding here, we
decided to subdivide the blocked condition further into a blocked
AB group and a blocked A-only group. In the blocked AB group,
the training sequence consisted of 10 A stimuli followed by 10 B
stimuli. In the blocked A-only group, the training sequence con-
sisted of 20 A stimuli only. Stimuli within each category were
selected and ordered randomly. Of the 39 participants in the
blocked condition, 20 were assigned to the blocked AB group and
19 to the blocked A-only group. To anticipate, we found that both
blocked groups—the blocked AB group and the blocked A-only
group—performed about equally on all measures.

Results and Discussion

Categorization strategy analysis method. We hypothesized
that a participant may use one of three categorization strategies
that we call bimodal, unimodal, and flat. The bimodal categoriza-
tion strategy assumes that a participant consistently uses a rule
along the bimodal, category-relevant stimulus dimension (e.g.,
sorting short lines into one category and long lines into another
category when length is indeed the bimodal dimension). The
unimodal categorization strategy assumes that a participant con-
sistently uses a rule along the unimodal, category-irrelevant stim-
ulus dimension. The flat categorization strategy assumes that a
participant uses a category label with a fixed probability, irrespec-
tive of which stimulus is presented. Participants who were best fit
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Figure 1. Scatterplot of the stimuli used in all experiments. Each point
represents a line with a particular value on the bimodal (relevant) dimen-
sion (e.g., length) and the unimodal (irrelevant) dimension (e.g., orienta-
tion). Black circles denote members of one category, and gray squares
denote members of another category. Lengths ranged approximately from
100 to 500 pixels, and orientations ranged from 0° to 90°.

Table 1
Category Structure Parameters Used in All Experiments

Physical dimension �A �B �

Length bimodal
Length 187.5 412.5 12.5
Orientation 45 45 15

Orientation bimodal
Length 300 300 100
Orientation 28.1 61.9 1.88

Note. Covariance is zero in each category. Length is given in pixels,
orientation in degrees.
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by the flat model could be responding randomly or could be
adopting a number of different strategies across the experiment.1

We used a decision-bound model to instantiate each strategy. A
detailed formalization of the decision-bound model is provided
elsewhere (see Ashby, 1992), but here we briefly describe the
basic procedure. Each unidimensional (bimodal and unimodal)
model assumes that an observer sets a criterion on a single per-
ceptual dimension and then makes a decision about the stimulus
value on that dimension. When the stimulus value falls above the
criterion, it is classified as A, and when the stimulus value falls
below the criterion, it is classified as B. For example, in the present
experiment, observers might use the rule “Respond A if the line
length is short, respond B if it is long.” The unidimensional
(bimodal and unimodal) models have two free parameters: a de-
cision criterion on the selected perceptual dimension and the
variance of internal (perceptual and criterial) noise. The bimodal
model assumes that the criterion was created along the bimodal
dimension (e.g., see Figure 2A); the unimodal model assumes that
the criterion was created along the unimodal dimension (e.g., see
Figure 2B). Unlike the two unidimensional models, the flat model
assumes that the participant responds with a fixed probability of
responding A to all stimuli, irrespective of their stimulus values
along either dimension. Generally, the flat model has one free
parameter, p (the probability of responding A). We also fit a
zero-parameter version of the flat model, assuming a fixed prob-
ability of responding A at p � .5.

Each of the models was fit to the test phase categorization
responses of each participant, once for the first 20 testing phase
trials (for comparison with existing literature; “early”) and once
for all 160 testing trials (“across”). We estimated model parame-
ters using maximum likelihood procedures and the Bayesian in-
formation criterion (BIC; Schwarz, 1978). The BIC value is com-
puted from the likelihood of the responses (L), but takes into
account the number of free parameters (k) and the number of
observations (N) that were used to compute the likelihood (penal-
izing for extra free parameters):

BIC � �2 ln L � k � ln N.

Model fit evaluation. By selecting the model associated with
the smallest BIC value, we identified the categorization strategy
(bimodal, unimodal, or flat) that best characterized each partici-
pant’s responses. The majority of participants’ data were best fit by
the bimodal or the unimodal model (see Figure 3). Visual inspec-
tion of each participant’s response pattern closely matched those of
the formal model fits. A representative response pattern for three
participants, each using a different categorization strategy, is pre-
sented in Figure 2.

The mean goodness-of-fit value (BIC) for all models and the
proportion of responses accounted for by the models, separately
for participants that were best fit by the bimodal, unimodal, and
flat strategies, are presented in Table 2. The proportion of re-
sponses accounted for by a model can be computed by binarizing
the likelihood of a response to each stimulus (i.e., predicting
Response A when likelihood of A according to the model is higher
than likelihood of B, and vice versa) and then computing the
proportion of participants’ responses that match the predicted
response. Table 2 shows that for participants identified as using a
bimodal or a unimodal strategy, the corresponding proportion of

correctly predicted responses was very high, around 90%, con-
firming that these models did an excellent job of characterizing
participants’ responses.2

Categorization strategy results. Figure 3 depicts the propor-
tion of participants within each group using the bimodal, unimo-
dal, and flat strategy early (first 20 testing phase trials; Figure 3A)
and across the full 160-trial testing phase (Figure 3B). To assess
strategy preferences in each condition, we tested whether (among
the participants exhibiting a consistent—bimodal or unimodal—
strategy) one of the strategies was selected over the other strategy
significantly more frequently than expected by chance, as evalu-
ated with a binomial test with a probability of p � .5 for each of
the two strategies. The results are presented in Table 3. The results
(see Figure 3 and Table 3) show that blocked sequences did not
lead to better learning in terms of a match between participants’
categorization strategies and the underlying category structure. On
the contrary, the bimodal categorization strategy was significantly
preferred over the unimodal strategy in the intermixed condition,
suggesting that participants were sensitive to the underlying cate-
gory structure when presentation order was not manipulated. In
contrast, there was no significant preference for either strategy in
the blocked AB condition or the blocked A-only condition. In fact,
the unimodal categorization strategy was selected numerically
more frequently than the bimodal strategy in both blocked condi-
tions.

Experiment 1B

The advantage of blocked over intermixed exemplar sequences
in incidental unsupervised learning has been shown repeatedly
(Clapper, 2006; Clapper & Bower, 1994, 2002). This makes the
reversed pattern observed in Experiment 1A for intentional learn-

1 It is possible that some participants consistently used one strategy but
occasionally switched response buttons because they forget the category
assignment that they were using. Such a participant would be classified as
a flat responder. It is also possible that participants based their categori-
zation decision on both dimensions. To capture either such behavior, we
developed an alternative dependent measure that determined whether
changes in the stimulus dimensional values from trial to trial were predic-
tive of a switch from one category response to the other. This analysis
provided us with model-free weighting of each dimension on individual
participant’s responses. For instance, a participant would score high weight
on length if he responded with the same button on consecutive trials when
the current and previous stimulus had similar lengths, but responded with
different buttons on consecutive trials when the current and previous
stimulus had dissimilar lengths. In short, the results of this alternative
analysis closely match those of the response strategy analysis, with the vast
majority of participants identified as using bimodal or unimodal strategy
indeed showing high weight for that dimension and near-zero weight for
the other. These results suggest that the assumption of a unidimensional
strategy is a valid one. Additionally, the vast majority of participants
classified as flat showed near-zero weight on both dimensions, suggesting
that these participants were mostly responding randomly and did not
appear to be simply forgetting the button assignments.

2 For brevity, we report the goodness of fit and proportion of responses
accounted for by the models only for Experiment 1A. It is important to note
that similar excellent fits were obtained in all following experiments
reported in this article, suggesting that the unidimensional (bimodal and
unimodal) models provided good account for participants’ responses in all
conditions that were investigated.

734 ZEITHAMOVA AND MADDOX



ing quite interesting. To ensure that the reversal of the effect
observed here was not due to stimulus, category structure, or other
methodological differences, but indeed due to a different learning
mode, we replicated Experiment 1A but added learning mode
(intentional vs. incidental) as a second factor in Experiment 1B. As
we observed no significant differences between the blocked AB
group and the blocked A-only group, we included only the blocked
AB version because it equates the number of training stimuli from
both categories. For consistency across the testing phase of Ex-
periments 1A and 1B, we manipulated the participants’ learning
mode only during the presentation of the training trials, keeping
the testing phase identical to that of Experiment 1A in all condi-
tions.

Method

Participants. Eighty University of Texas at Austin students
participated in the experiment as partial fulfillment of a course

credit requirement or for pay. All participants had 20/20, or cor-
rected to 20/20, vision. Participants were randomly divided into
four groups of 20 participants each: intentional intermixed, inten-
tional blocked, incidental intermixed, incidental blocked.

Stimuli and apparatus. The stimuli and presentation apparatus
were identical to those of Experiment 1A.

Procedure. The procedure was similar to Experiment 1A ex-
cept that 240 testing trials were included instead of 160. As in
Experiment 1A, we analyzed categorization strategy both early
(during the first 20 testing trials) and across the testing phase. For
the across testing phase analysis, we focused on both 160 test trials
(as in Experiment 1A) and on all 240 trials. For brevity and
consistency across studies, we report only the results based on the
first 160 trials. Including all 240 trials yielded minimal differences
(maximum of 1 participant changing strategy in any condition).

The exemplar sequence and learning mode were manipulated
during the 20-trial training phase. A 2 (sequencing order: inter-

Figure 2. Examples of actual categorization responses for three participants who each used a different response
strategy: (A) responses of a participant who based his or her categorization decision on the bimodal dimension;
(B) responses of a participant who based his or her categorization decision on the unimodal dimension; (C)
responses of a participant who was best fit by a flat response model. Each symbol denotes a stimulus (line) with
a particular length (x-axis) and orientation (y-axis). Stars denote the stimuli that the participant labeled as
Category A stimuli, and diamonds denote the stimuli that the participant labeled as Category B stimuli.
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Figure 3. Percentage of participants within each group using the bimodal, unimodal, and flat categorization
strategies: (A) strategy use during the first 20 testing trials; (B) strategy use across 160 testing trials.
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mixed vs. blocked) � 2 (learning mode: intentional vs. incidental)
factorial design was used. The selection and sequencing of the
initial 20 trials in the intermixed and blocked sequencing order
condition were the same as for the intermixed group and the
blocked AB group from Experiment 1A. The instructions for
participants in the intentional learning mode condition were iden-
tical to those from Experiment 1A. Participants in the incidental
learning mode condition were kept naive before and during the
training phase regarding the nature of the experimental task. To
facilitate possible incidental category learning during the training
phase, we adopted a pleasantness rating task and cover story used
successfully in previous unsupervised category learning research
(Love, 2003). Participants were asked to view the training stimuli
and rate how much they liked each line on the scale from 1 to 7.
Participants were told that the ratings would be used to select
stimuli for a future experiment. After viewing and rating the
training stimuli (sequenced either randomly or blocked by cate-
gory, as in the intentional condition), the participants were told that
the stimuli they just rated, as well as the stimuli they were about
to see, were members of two naturally distinct categories. They

might have noticed the distinction already. If not, they would
discover the method of separating the stimuli into the two naturally
distinct categories during the rest of the experiment. The testing
phase was identical for all participants and involved a categoriza-
tion judgment without feedback on each trial.

Results and Discussion

The proportion of participants using the bimodal, unimodal, and
flat response strategies within each group is depicted in Figure 4.
The categorization strategy preferences in each condition across
participants are presented in Table 4. In the intentional learning
mode condition, the bimodal categorization strategy was signifi-
cantly preferred over the unimodal strategy in the intermixed
condition, but not the blocked condition, replicating the results of
Experiment 1A. The opposite was found for the incidental learning
mode: Whereas participants in the intermixed condition did not
show any strategy preference, participants in the blocked condition
were significantly more likely to use the bimodal strategy. This
suggests that participants in the incidental intermixed condition did
not endorse the underlying category structure in the training stim-
uli during the pleasantness rating task and were equally likely to
pick the bimodal or the unimodal dimension when surprised with
the categorization task. Conversely, when the presentation of the
training exemplars was blocked, the incidental participants were
more likely to match their preference to the underlying category
structure. The interaction of factors (Learning Mode � Sequenc-
ing) on the probability of using the bimodal strategy was signifi-
cant for the early testing phase (early: B � 0.934, SE � 0.464, p �
.044; across: B � 0.449, SE � 0.470, p � .340; logistic regression
for probability of using bimodal strategy).

The results from Experiment 1 suggest that learning mode
modulates the effect of exemplar sequencing in unsupervised
categorization. In incidental learning, blocking training exemplars
by category increased the likelihood of participants using strategy
matching the underlying category structure, consistent with previ-
ous findings (Clapper & Bower, 1994, 2002). However, this pat-
tern reverses in intentional learning.

Table 2
Model Fit Results From Experiment 1A

Strategy

BIC Accounted for

Bimodal Unimodal Flat Bimodal Unimodal Flat

Early
Bimodal 12 (1.3) 32 (0.4) 30 (0.4) .94 (.01) .62 (.02) .59 (.01)
Unimodal 31 (0.7) 12 (1.1) 29 (0.6) .64 (.02) .93 (.01) .63 (.02)
Flat 27 (2.4) 28 (2.4) 25 (2.4) .68 (.04) .69 (.04) .66 (.04)

Across
Bimodal 63 (8.4) 235 (1.4) 226 (0.5) .94 (.01) .54 (.01) .52 (.01)
Unimodal 217 (5.7) 105 (10.8) 207 (5.4) .63 (.02) .87 (.02) .64 (.02)
Flat 224 (10.6) 220 (10.5) 213 (10.6) .60 (.04) .60 (.05) .59 (.04)

Note. Mean Bayesian information criterion (BIC) goodness-of-fit measure and proportion of participants’
responses accounted for by bimodal model, unimodal model, and flat (one-parameter) model, separately for
participants who were best fit by the bimodal, unimodal, and flat response strategy. Standard errors are in
parentheses. The fit of the zero-parameter version of the flat model depends solely on the number of trials (as
there is always .5 prediction error for every response) and was thus the same for all participants: BIC � 28 for
early 20 test trials; BIC � 222 across the testing phase; and proportion of responses accounted for � .5. Early �
fit results for first 20 testing trials; across � fit results across 160 trials.

Table 3
Categorization Strategy Preference Across Participants in Each
Condition of Experiment 1A

Condition

Early Across

Preference p Preference p

Intermixed Bimodal .006 Bimodal .001
Blocked AB Neither .593 Neither .407
Blocked A only Neither .500 Neither .227

Note. Preference results and the p values reflect a binomial test of a null
hypothesis that each strategy was selected equally often against an alter-
native hypothesis that the proportion of participants using one strategy was
greater than for the other strategy. Bimodal � significant preference for
bimodal over unimodal strategy; neither � no significant preference for
either strategy. Unimodal strategy was not preferred significantly in any
condition of Experiment 1A.

736 ZEITHAMOVA AND MADDOX



Experiment 2

Experiment 2 further explored sequencing effects in intentional
unsupervised learning. Research on recency effects demonstrated
how similarity between successive stimuli affects categorization
responses. For example, people tend to assign a new stimulus into
a different category than the previous stimulus when the new
stimulus differs saliently from the previous stimulus (Jones et al.,
2006; Jones & Sieck, 2003; Stewart et al., 2002). We hypothesized
that in unsupervised learning, participants may be more likely to
separate stimuli along the dimension that changes its value more
dramatically. In the blocked condition, stimulus-to-stimulus
changes were large along the unimodal dimension but minimal
along the bimodal dimension, working against the effect of the
underlying category structure. In the intermixed condition,
stimulus-to-stimulus changes could be large along both dimen-
sions, thus leading the participant to rely mainly on the underlying
category structure. Thus, we hypothesized that stimulus-to-
stimulus changes along the two dimensions are the critical factor in

categorization strategy selection when the learning mode is inten-
tional.

To test this hypothesis, we constructed three training sequences
that accentuated or attenuated the stimulus-to-stimulus contrast on
the two dimensions. First, we constructed a training sequence with
maximal stimulus-to-stimulus changes along the bimodal dimen-
sion and minimal changes along the unimodal dimension. A sche-
matic of this sequence is presented in Figure 5A (“zipper” condi-
tion). If stimulus contrast affects strategy selection in intentional
learning as we hypothesized, this manipulation should lead to an
increase in the bimodal strategy preference. Second, we con-
structed a training sequence that was a variation of the blocked
sequence but avoided large stimulus changes along the unimodal
dimension (“blocked-gradual” condition; see Figure 5B). We ex-
pected higher bimodal strategy use in this blocked-gradual condi-
tion than in the blocked (and perhaps even intermixed) condition
from Experiment 1. Finally, we constructed a second variation
of the blocked condition that minimized the stimulus contrast
along the bimodal dimension and maximized the stimulus contrast
along the unimodal dimension (“blocked-sudden” condition; see
Figure 5C). This sequencing should further bias the participants
toward the unimodal dimension beyond what was observed in the
blocked condition of Experiment 1. Experiment 2 compares per-
formance across these three training sequences under intentional
learning conditions.

Method

Participants. Eighty-one students from the University of
Texas at Austin participated in the study, either as a partial
fulfillment of a course requirement or for pay. All participants
were tested for 20/20 vision.

Stimuli and apparatus. The stimuli and presentation apparatus
were identical to those in Experiments 1 and 2.

Procedure. There were three exemplar sequencing conditions
as described above: zipper, blocked-gradual, and blocked-sudden
(see Figure 5). The actual training stimuli were selected randomly
from the same distributions as in Experiment 1. For each partici-
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Figure 4. Percentage of participants within each group using the bimodal, unimodal, and flat categorization
strategies in Experiment 1B: (A) strategy use during the first 20 testing trials; (B) strategy use across 160 testing
trials.

Table 4
Categorization Strategy Preference Across Participants in Each
Condition of Experiment 1B

Condition

Early Across

Preference p Preference p

Incidental
Intermixed Bimodal .032 Bimodal .010
Blocked Neither .402 Neither .314

Intentional
Intermixed Neither .500 Neither .180
Blocked Bimodal .011 Bimodal .018

Note. Preference results and the p values reflect a binomial test of a null
hypothesis that each strategy was selected equally often against an alter-
native hypothesis that the proportion of participants using one strategy was
greater than for the other strategy. Bimodal � significant preference for
bimodal over unimodal strategy; Neither � no significant preference for
either strategy. Unimodal strategy was not preferred significantly in any
condition of Experiment 1B.
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pant, the first training stimulus was randomly selected from one of
the four extreme stimuli.

Results and Discussion

The percentage of participants using the bimodal, unimodal, and
flat categorization strategies is presented in Figure 6. The strategy
preference in each condition across participants is presented in
Table 5. Participants in the zipper condition overwhelmingly se-
lected the bimodal categorization strategy. Participants in the
blocked-gradual condition were equally likely to select the unimo-
dal strategy as the bimodal strategy, and participants in the
blocked-sudden condition were more likely to select the unimodal
dimension. Surprisingly, the blocked-gradual presentation did not
prevent participants from focusing on the unimodal dimension and
did not lead to better learning than observed in the blocked
conditions from Experiment 1. One hypothesis motivating the
blocked-gradual condition was that large changes along the uni-
modal dimension in the blocked condition in Experiment 1 led
participants to use the unimodal strategy before the first stimulus
from the second category was presented because of large stimulus
changes along the unimodal dimension. The blocked-gradual find-

ing in Experiment 2 suggests that participants in the blocked
condition tend to form two categories even in the absence of large
changes along the unimodal dimension. A more detailed exami-
nation of the results is reserved for the General Discussion.

General Discussion

As teachers, parents, or students, we are often faced with situ-
ations in which we present, or are presented with, a body of
information that must be grouped or organized. In many cases,
there is some underlying structure to the information, but learning
is unsupervised (or, at the very least, trial-by-trial feedback is
absent). This article investigates the effects of different training
sequences on subsequent category formation when an underlying
category structure exists. Sequencing (order) effects have been
shown to affect both intentional supervised category learning
(Goldstone, 1996; Jones et al., 2006; Jones & Sieck, 2003; Stewart
et al., 2002) and incidental unsupervised category learning (Clap-
per, 2006; Clapper & Bower, 1994, 2002). However, very little is
known about their effect on intentional unsupervised category
learning, an everyday form of categorization.

Figure 5. A schematic of the stimulus sequence order (1–20) for the 20 training trials in each condition of
Experiment 3.
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Figure 6. Percentage of participants using the bimodal, unimodal, and flat categorization strategies in
Experiment 2: (A) best fitting strategy during the first 20 testing trials; (B) best fitting strategy across 160 testing
phase trials.
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In this article, we focused on this understudied form of catego-
rization and investigated how exemplar sequencing affects peo-
ple’s ability to match their categorization strategy to an underlying
category structure during intentional learning. We demonstrated
that the order of initial stimuli and primarily the contrast between
successive stimuli have a major effect on categorization strategy
selection and that this effect is different for intentional learning
from that found for incidental learning (Clapper, 2006; Clapper &
Bower, 1994, 2002). Below we summarize these results and dis-
cuss how stimulus contrast and other factors affect unsupervised
category learning.

Exemplar Sequencing and Stimulus Contrast Effects in
Intentional Unsupervised Learning

Across two experiments, we examined unsupervised categori-
zation strategy preferences in five conditions that varied the se-
quence of the training exemplars. The contrast between the current
and the previous stimulus has been shown to strongly influence
categorization responses in intentional supervised categorization
tasks (Jones et al., 2006; Jones & Sieck, 2003). Inspired by this
research, we hypothesized that participants under intentional learn-
ing conditions may use the contrast between successive stimuli to
guide categorization strategy selection. To quantify the stimulus-
to-stimulus changes associated with each sequencing condition, we
computed the cumulative stimulus value change along each di-
mension observed by each participant in each condition. Graphical
depiction of the actual cumulative changes along each dimension
observed in the five sequencing conditions investigated under the
intentional learning mode is presented in Figure 7. The associated
categorization strategy preferences during early testing trials are
presented in Figure 8.

Figures 7 and 8 show how the cumulative changes along the two
dimensions affect the observed strategy preferences. First, partic-
ipants were more likely to select the bimodal categorization strat-
egy when the bimodal dimension showed larger cumulative
changes. Second, conditions associated with larger changes along
the unimodal than the bimodal dimension were associated with a
lack of preference for the bimodal strategy, suggesting that em-
phasizing the unimodal dimension can occlude the underlying

category structure. Interestingly, eliminating the large stimulus-to-
stimulus changes along the unimodal dimension in the blocked-
gradual condition was not sufficient to induce a preference for the
bimodal categorization strategy. Rather, large changes along the
bimodal dimension (as present in the intermixed condition and to
the extreme in the zipper condition) were necessary to induce a
preference for the bimodal categorization strategy.

To quantify the effect of the cumulative change along each
dimension on strategy preferences, we ran a logistic regression
analysis with the probability of selecting the bimodal versus uni-
modal strategy as a dependent variable and the cumulative changes
along each dimension as independent variables, including all par-
ticipants across the five sequencing conditions. The odds of se-

Figure 7. Cumulative stimulus-to-stimulus changes along the bimodal
and unimodal dimensions observed during training by participants in
different sequencing conditions. The data are in normalized units corre-
sponding to a standard deviation of stimulus values along the unimodal
dimension (100 pixels for length and 15° for orientation). The error bars
represent standard deviation across participants.
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Figure 8. Percentage of participants using the bimodal, unimodal, and
flat categorization strategies during the early testing trials from five ex-
emplar sequencing conditions. Data from the zipper, blocked-gradual, and
blocked-sudden conditions are taken from Experiment 2. Data for the
intermixed and blocked condition were pooled across Experiments 1A
(intermixed and blocked AB condition) and 1B (intentional intermixed and
intentional blocked condition). Asterisk denotes significant preference for
a given strategy in that condition.

Table 5
Categorization Strategy Preference Across Participants in Each
Condition of Experiment 2

Condition

Early Across

Preference p Preference p

Zipper Bimodal �.001 Bimodal �.001
Blocked-gradual Neither �.5 Neither �.5
Blocked-sudden Unimodal .010 Unimodala .061

Note. Preference results and the p values reflect a binomial test of a null
hypothesis that each strategy was selected equally often against an alter-
native hypothesis that the proportion of participants using one strategy was
greater than for the other strategy. Bimodal � significant preference for
bimodal over unimodal strategy; neither � no significant preference for
either strategy; unimodal � significant preference for unimodal over
bimodal strategy.
a Marginal significance.
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lecting a bimodal strategy (i.e., p(bimodal)/p(unimodal)) increase
with increased cumulative change along the bimodal dimension
(b � 0.084, SE � 0.020, p � .001, exp(b) � 1.087) and decrease
with increased cumulative change along the unimodal dimension
(b � �0.031, SE � 0.021, p � .139, exp(b) � 0.967). Adding
dummy-coded variables for the five sequencing conditions into the
logistic model did not significantly improve the fit of the model,
�2(4, N � 143) � 3.78, p � .626, suggesting that the model
provides a reasonable fit for all five sequencing conditions.

Although the explanatory effect of the unimodal dimension
cumulative change beyond what was already explained by the
bimodal dimension did not reach significance, it is important to
note that this lack of significance may reflect the design of our
experiments rather than signify no effect (which would be surpris-
ing given the results of the blocked-sudden condition). As we
aimed to explore extreme cases of sequencing, the resulting cu-
mulative changes along the unimodal dimension were, across
participants in all conditions, negatively correlated with the
changes along the bimodal dimension (r � �.360, p � .001).
Therefore, we cannot unambiguously estimate the independent
effects of two dimensions. When testing for the effect of the
unimodal dimension alone, the effect is significant (b � �0.053,
SE � 0.019, p � .006, exp(b) � 0.948).

The effect of the initial sequencing (see Figure 8) stands in
contrast to the findings of Colreavy and Lewandowsky (2008),
who found no effect of the initial stimulus order on participants’
strategy selection using a similar category structure. Importantly,
though, they did not introduce explicit sequence manipulations like
those included in the current report. To replicate their condition,
we ran the logistic regression analysis including data from our
analogous, intermixed condition. In agreement with their findings,
the effect of the cumulative change along either dimension was
nonsignificant (all p � .2). Thus, as the variability of cumulative
change along each dimension was fairly limited within each con-
dition compared with the variability between conditions (see Fig-
ure 7), the between-conditions comparison was needed to reveal
the relationship.

Intentionality of Learning

The results observed here under intentional learning conditions
are in direct contrast to those observed under incidental learning
conditions (Clapper, 2006; Clapper & Bower, 1994, 2002). For
example, Clapper and Bower (1994) found minimal evidence for
unsupervised category learning in their intermixed training condi-
tion but found significant evidence for category learning in their
blocked condition. In a slightly different incidental paradigm,
Medin and Bettger (1994) found superior category learning (as
measured by recognition memory) when they minimized stimulus-
to-stimulus changes compared with maximized stimulus-to-
stimulus changes, just the opposite from that observed here for
intentional category learning. We hypothesized and tested in Ex-
periment 1B that intentionality of learning is the main factor
responsible for the different pattern of results. We found that in
contrast to participants in intentional learning, participants in the
incidental learning mode did show significant preference for the
bimodal strategy in the blocked but not the intermixed condition.
Therefore, intentionality of learning needs to be taken into account
when studying the mechanism of unsupervised category learning.

Other Factors

It is important to note that other factors, beyond the scope of this
article, have also been shown to affect unsupervised category
learning. First, the nature of the underlying category structure
plays a major role in unsupervised learning (Anderson, 1991;
Ashby et al., 1999; Billman & Knutson, 1996; Pothos & Chater,
2002; Stewart & Chater, 2002). For example, Pothos and Chater
(2002) showed that highly separable categories (categories that
maximize within category similarity and minimize between cate-
gory similarity) are most intuitive. Second, prior knowledge aids
unsupervised learning (Clapper, 2007; Kaplan & Murphy, 1999).
For example, Clapper (2007) showed that prior knowledge makes
different features less confusable and less interchangeable, increas-
ing the probability that participants discover feature intercorrela-
tions in complex category structures. Third, the learner’s current
task and goal also determine learned category representations
(Love, 2003; Markman & Ross, 2003; Yamauchi, Love, & Mark-
man, 2002). For example, Love (2003) showed that a particular
task that a participant pursues during incidental category learning
determines what category structures are likely to be acquired. How
category structure, prior knowledge, and participants’ goals inter-
act with exemplar sequencing and learning mode is a question for
future research.
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