Aging effects on perceptual and conceptual memory: transformations from short-term to long-term memory

Anisha Adke, Dr. Dasa Zeithamova

Research Purpose

To determine if memories transform from perceptual to conceptual over time and to identify the effect of aging on this transformation.

Abstract

Conceptual and precision memory are two functions of healthy and adaptive memory. Conceptual memory retains the gist of events. Precision memory allows memory of specific perceptual details of events, contrasting them from other similar experiences. Precision and conceptual memory may be differentially important for short-term memory and long-term memory. Long-term memories may have a tendency to retain meaning but lose details. This is adaptive in daily life, but may be a problem in certain situations, like during eyewitness testimonies, where details rather than generalities are essential. Loss of memory precision also characterizes normal aging, but it is unclear whether this occurs because details are lost in long-term memory or they are not encoded in short-term memory. The purpose of the study was to determine if memories transform from perceptual to conceptual over time and identify the effect of aging on this relationship.

Methods

Subjects' memory were tested for general meaning (conceptual memory) or specific details (perceptual memory) either immediately (short-term) or after thirty minutes (long-term). Preliminary results show that short-term memory supports quicker and more accurate judgments of perceptual details, whereas long-term memory supports quicker and more accurate judgments of meaning. Future testing will assess whether older adults are quicker and more accurate in judgments of meaning in both long and short-term memory, suggesting that older adult process events on a conceptual level even when information is maintained over very short delays.

Theory

Perceptual memory

- Thirty subjects shown images
- Tested: General meaning (conceptual memory)
- Tested either immediately (short-term) or after thirty minutes (long-term)

Stimuli fell into one of five conditions:

- **Condition**
 - Study
 - Test

<table>
<thead>
<tr>
<th>Condition</th>
<th>Study</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>Exact</td>
<td>Test</td>
</tr>
<tr>
<td>Similar</td>
<td>Similar</td>
<td>Test</td>
</tr>
<tr>
<td>New</td>
<td>New</td>
<td>Test</td>
</tr>
</tbody>
</table>

Conceptual memory

- Old Concept: coconut
- New Concept: pineapple

For both long- and short-term memory tasks, there were 27 stimuli for each condition.

Results

- **Accuracy**
 - Interactions between perceptual & conceptual memory
 - The decay in perceptual memory over time is significantly greater than the decay in conceptual memory over time.
 - There are no differences in accuracy or reaction times between perceptual and conceptual memory in the short-term tasks.

- **Reaction times**
 - Short-term memory: 1.4 seconds
 - Long-term memory: 1.2 seconds

- **Accuracy Breakdown**
 - Short-term memory: 0.8
 - Long-term memory: 0.6

- **Perceptual Memory Task—Response Breakdown**
 - Short-term memory task
 - Frequency of Classification
 - Exact: 0.8, Similar: 0.6, New: 0.4

- **Conclusions**
 - In healthy young adults, perceptual details are readily perceived and maintained over short delays.
 - Immediate judgments about perceptual details and about meaning are equally fast and accurate.
 - With time, memories retain the gist but lose perceptual details.
 - The loss of perceptual detail over time is greater than the loss of conceptual memory.

Future Directions

- **Aging Study**
 - Prior studies showed that older adults remember disproportionately less perceptual details than young adults, even when they retain the gist of experiences.
 - I will be testing whether this effect is because there is greater perceptual decay over time or because the details are not encoded in the first place.

Acknowledgements:

Funding provided by the Office of the Vice President for Research & Innovation. Special thanks to the Brain & Memory Lab, particularly Dr. Dasa Zeithamova-Demircan, Dr. Caitlin Bowman, and Alex de Almeida for the guidance and to Anthony Resnick, Stefans Aleman, Zeyu Hu, and Hannab Hostick for data collection.

References