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A B S T R A C T

Pattern-information approaches to fMRI data analysis are becoming increasingly popular but few studies to
date have investigated experimental design optimization for these analyses. Here, we tested several designs that
varied in the number of trials and trial timing within fixed duration scans while participants encoded images of
animals and tools. Trial timing conditions with fixed onset-to-onset timing ranged from slow 12-s trials with two
repetitions of each item to quick 6-s trials with four repetitions per item. We also tested a jittered version of the
quick design with 4–8 s trials. We assessed the effect of trial timing on three dependent measures: category-level
(animals vs. tools) decoding accuracy using a multivoxel pattern analysis, item-level (e.g., cat vs. dog vs. lion)
information estimates using pattern similarity analysis, and memory effects comparing pattern similarity scores
across repetitions of individual items subsequently remembered vs. forgotten. For single trial estimates,
category decoding was equal across all trial timing conditions while item-level information and memory effects
were better detected using slow trial timing. When modeling events on an item-by-item basis across all
repetitions of a given item, a larger number of quick, regularly spaced trials provided an advantage over fewer
slow trials for category decoding while item-level information was comparable across conditions. Jittered and
non-jittered versions of the quick trial timing did not differ significantly in any analysis. These results will help
inform experimental design choices in future studies planning to employ pattern-information analyses and
demonstrate that design optimization guidelines developed for univariate analyses of a few conditions are not
necessarily optimal for pattern-information analyses and condition-rich designs.

Introduction

The possibility of non-invasive imaging of activity in a healthy
human brain using functional MRI (fMRI) has transformed the field of
psychology and neuroscience in recent decades. For most of this time,
studies relying on traditional univariate analysis using the general
linear model (GLM) framework have been fruitful in converging with
knowledge gathered from animal-lesion and human-neuropsychologi-
cal studies as well as generating new insights unique to observing the
intact human brain. While the utility of the univariate approach has not
been exhausted, new analytical approaches have emerged that consider
multivariate patterns of activation across many voxels or entire regions.
Multivoxel pattern analyses, or MVPA, can often provide a richer

picture than univariate analyses and open the door for an array of new
research questions (Haxby et al., 2001; Jimura and Poldrack, 2012;
Kriegeskorte and Bandettini, 2007; Norman et al., 2006; Ward et al.,
2013).

The two common types of MVPA are classifier-based approaches
and pattern-similarity approaches. Classifier-based approaches use
machine-learning pattern-classification algorithms, such as support
vector machines or logistic regression classifiers, to decode information
from distributed activation patterns (Norman et al., 2006; Pereira
et al., 2009). A machine-learning algorithm is trained to differentiate
between patterns of activation across voxels evoked by two or more
conditions (e.g., viewing of faces vs. viewing of scenes). The analysis is
typically done at a single subject level by training the classifier on data
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from all but one run and then testing the generalization accuracy of the
classification on the remaining run. This process is repeated for each
subject until all runs have been left out once and used to test the
classifier. A cross-validated accuracy is then computed by averaging the
generalization accuracy across all iterations. Above-chance classifica-
tion accuracy within a region demonstrates the sensitivity of that
region to the tested conditions.

Pattern similarity analysis (PSA, also referred to as representational
similarity analysis, or RSA) aims to determine what information is
coded in a region by estimating the activation pattern associated with
specific stimuli or conditions (neural item representations) and then
computing similarity between these patterns (Kriegeskorte et al.,
2008a). For instance, if an experiment consists of presenting a series
of objects, it may be of interest not only how the brain responds to
objects in general, but also how patterns of activation relate to specific
objects (e.g., “banana” vs. “orange” vs. “basketball”). Determining
which stimuli are treated as similar and which are treated as different
can provide insight into which stimulus features various regions are
most sensitive to. For example, if the activation pattern evoked by an
orange is more similar to the pattern evoked by a basketball compared
to the pattern evoked by a banana, the region may code for perceptual
properties of the stimuli such as shape or color. However, if an orange-
evoked activation pattern is more similar to the pattern evoked by a
banana than to the pattern evoked by a basketball, then the region may
code for conceptual information such as belonging to the category of
fruits. This is just one of the examples that demonstrates the utility of
these multivariate analyses to utilize the potential information em-
bedded in fMRI datasets.

While several studies have been dedicated to fMRI design optimi-
zation, most have focused on optimization for standard univariate
analyses (Burock et al., 1998; Dale, 1999; Friston et al., 1999; Stark
and Squire, 2001). It is unclear whether designs optimized for
univariate contrasts of a few experimental conditions are necessarily
optimal for pattern-information analyses and vice-versa. For example,
one study showed that greater numbers of shorter runs work better for
classifier-based analyses than smaller numbers of longer runs
(Coutanche and Thompson-Schill, 2012). This is presumably because
a larger number of shorter runs provide more training trials for leave-
one-run-out cross validation, thus resulting in more robust estimates of
condition-associated patterns. Such consideration is irrelevant for
standard univariate analyses because they typically estimate condi-
tion-associated activation using the entire dataset and rarely include
cross-validation. In fact, fewer, longer runs may be better suited for
standard univariate analyses (Henson, 2007). Accordingly, a plan to
employ pattern-information analyses should be considered when
designing an fMRI experiment, but there is currently limited empirical
evidence to guide design choices.

There are many different approaches and applications of pattern-
information analyses, making it impossible to devise universal recom-
mendations. However, one aspect employed by many studies that is
unique to pattern-information analyses is a condition-rich design.
Commonly, standard univariate designs employ a small number of
experimental conditions, each consisting of many trials. Trials are
spaced within and between conditions so that a regressor representing
one condition is minimally correlated with regressors representing
other conditions and the contrast between conditions is detectable with
a realistic effect size. In contrast, pattern-information analyses often
consider each unique stimulus or each individual trial as a separate
condition. For instance, rather than measuring the BOLD response to
objects in general, patterns of activation related to “cat” vs. “dog” vs.
“hammer” are of interest. Therefore, some of the established proce-
dures for trial timing optimization for univariate analyses (Dale, 1999)
may not transfer well to condition-rich designs.

One solution are event-related designs that include sufficient time
between individual events so that the BOLD response can return close
to baseline before the next event is presented (Buckner et al., 1996;

McCarthy et al., 1997). Slow event-related designs, with longer onset-
to-onset timing (stimulus-onset asynchrony, or SOA) should be appro-
priate for both univariate and multivariate approaches, as they allow
for an estimation of trial-specific activation patterns without much
contamination from neighboring trials. Prior research has shown that
longer trials may be necessary to estimate single trial activation,
especially when trial-by-trial changes are of interest (Visser et al.,
2016). Slow event-related designs have a significant drawback because
only a few stimuli can be presented in a fixed amount of time (about 3–
5 stimuli per minute), leading to fewer items or fewer repetitions per
item that fit within the experiment. In addition, slow trial pacing allows
for more mind-wandering, which may affect performance (Antrobus
et al., 1966) and be reflected in the BOLD signal in an uncontrolled
way.

Another popular approach is to sacrifice individual-trial estimabil-
ity and instead quickly present a large number of trials. When inter-
stimulus time is jittered and conditions are appropriately intermixed to
ensure that the predicted BOLD signals for different conditions are not
strongly correlated, rapid event-related designs can provide better
sensitivity to detect univariate differences between conditions (Burock
et al., 1998; Dale, 1999). A modified version of this approach, coined as
a “quick” event-related design, has been successfully used in seminal
work using PSA to compare representations of individual objects across
humans and monkeys (Kriegeskorte et al., 2008b). In this study, the
researchers presented the same set of 92 images of real-world objects
(e.g., ear, kiwi, white male face) to monkeys and humans while
recording inferotemporal cortex responses using single-cell recording
in monkeys and high-resolution fMRI in humans. Measuring the pair-
wise similarity of the neural patterns in response to each object, the
authors demonstrated a hierarchy of categorical object representations
in the inferotemporal cortex strongly matched between species.
However, in this study, each individual stimulus was presented 11–
14 times and modeled using a single regressor across repetitions. In
that respect, the number of trials per regressor was not much smaller
than what is typically used in univariate analyses. Thus it is unclear
whether such trial timing could be used to estimate item-level
representation on single trials.

Based on prior research (Abdulrahman and Henson, 2016; Visser
et al., 2016), we hypothesized that if items have fewer repetitions or if
the estimation of each individual trial is of interest, rapid/quick designs
might not be suitable. Rapid event-related designs have several down-
sides. First, variable jitter may affect cognitive processes differentially
for long vs. short trials. For instance, participants may not fully process
the current trial or may not be ready for the next trial after short delays.
Conversely, they may grow impatient awaiting the next trial during an
unusually long delay. These trial-by-trial differences due to changes in
SOA can affect behavioral performance (see Suppl. Fig. 1) and likely
neural responses as well. While trial-specific effects can average out
across multiple trials in the same condition, they would remain part of
the activation patterns estimated based on a single (or a few)
presentation(s). Finally, rapid presentations of individual items lead
to a strong overlap of subsequent activation patterns due to sluggish
BOLD responses, which may make trial-by-trial estimates less reliable.
While iterative modeling of individual trials (LSS method, Mumford
et al., 2012) may, to some degree, alleviate the challenge of response
overlap, subtle trial-by-trial effects may still be lost (Visser et al., 2016)
and the variable SOA effects would not be addressed.

Notably, neither jittered trial onsets nor long SOAs are used in
behavioral cognitive experiments outside of an fMRI context. Instead,
trials are presented regularly at a pace that is dictated by psychological
constraints. Because of the shortcomings of these designs discussed
above, we were interested in whether it would be possible to deviate
from these common fMRI standards and use trial timings that are more
convenient from a psychological perspective without compromising
decoding efficiency. We reasoned that the main motive for including
jitter is to ensure a unique predicted BOLD response for each
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condition, minimally correlated with other conditions. This considera-
tion is less relevant for condition-rich designs. When the activation
pattern related to each trial is of interest, and thus each trial is its own
condition, jitter would presumably improve the estimability of one trial
only at an expense of other trials that would be pushed closer together.
When interested in patterns related to individual items repeated across
several trials, random ordering of repetitions may serve the same
purpose as jitter to ensure that predicted BOLD signals related to
different items are uncorrelated. We thus hypothesized that trial
jittering may not be necessary or beneficial for decoding analyses.
Instead, it may be more appropriate to evenly split the null time across
all trials, to make the shortest inter-stimulus intervals longer and to
remove effects related to SOA variability. At the opposite end, slow
trials are equally inconvenient from a psychological perspective and
severely restrict the total number of trials that can fit into an
experiment. We reasoned that when trials are spaced at least 6 s apart,
a peak of one trial would presumably fall on (or before) the onset of the
next trial, when the BOLD signal related to that trial would not yet be
detectable. Thus, we wanted to test the possibility of obtaining reliable
trial-by-trial pattern estimates using a fixed SOA starting at 6 s. Based
on prior research (Abdulrahman and Henson, 2016; Burock et al.,
1998; Visser et al., 2016), we did not test shorter fixed SOAs as they are
likely unsuitable for both univariate effect detection and trial-by-trial
pattern analyses.

The current study tested the empirical effects of trial timing ranging
from quick to slow event-related, trading off the length of the SOA with
the number of repetitions of individual stimuli. We tested the trial
timing effects using a memory encoding task in which participants
intentionally encoded multiple exemplars from two categories: animals
(cat, dog, lion, etc.) and tools (mallet, scissors, etc.). This task allowed
us to evaluate the trial timing effects on both item- and category-

representation estimates. To evaluate the reliability of the estimates
and to avoid inflated Type I error associated with within-run decoding
(Mumford et al., 2014), two runs of each design were completed using
the same physical stimuli in a different order. Item and category
estimates were then compared across runs. Category representations
were indexed as the classifier-based cross-validation accuracy for
decoding brain patterns related to animals vs. tools. Item-level
representations were assessed using PSA and indexed as the difference
between across-run neural pattern similarity for the same item (e.g.,
cat-cat similarity across runs) vs. neural pattern similarity of different
items from the same category (e.g., cat-dog similarity across runs).
Finally, to test the suitability of each design to detect more subtle
effects on item-representation estimates, we tested memory effects on
pattern similarity, indexed as differences in similarity scores for items
that were subsequently remembered vs. forgotten (Xue et al., 2010).

Materials and methods

Subjects

Thirty-eight young, healthy adults (mean age 21.8, range 18–35, 19
females) from the University of Oregon (UO) and the surrounding
community participated in the study. All participants signed an informed
consent and were screened for normal or corrected-to-normal vision, no
history of neurological disease, and no contra-indication for MRI in
concordance with the Standard Operating Procedures of the UO Lewis
Center for Neuroimaging. The study was approved by the UO Institutional
Review Board. Two participants were excluded from the study because
they fell asleep during at least one scan. One participant was excluded
because their behavioral data were accidentally corrupted. Data from the
remaining 35 participants are reported throughout the manuscript.

Fig. 1. Behavioral methods and memory performance. A. Encoding. During each run, participants were presented with 12 different items (6 animals and 6 tools) repeated 2–4
times. The number of repetitions of each item and the trial timing varied between runs, with two consecutive runs always using the same 12 items and the same timing condition in a
different order. B. During the self-paced test, participants were presented with the 60 items they had studied and 60 similar lures randomly intermixed, and were asked to provide an
old/new judgment. C. Trial timing conditions. Each trial timing condition included 2–4 repetitions per item. Fewer repetitions were presented using trials with a longer SOA, more
repetitions were presented using trials with a shorter SOA. A schematic example of possible trial onsets (vertical arrows) within a 24-s window is shown next to each design label.
Horizontal arrows show the trial timing (onset to onset). All designs except slow (2@10 s) fit within the same duration scan of 288 s. D. Proportion of items remembered for each design,
averaged across participants. E. Response times by design, averaged across participants. In both D and E, error bars denote across-subject standard error of the mean.
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Stimuli

The stimulus set consisted of 120 colored images of 60 tools and 60
animals. Within the set, there were two versions of each tool or animal,
which differed somewhat in their appearance (e.g., two different
giraffes, two different mallets).

Procedure

Participants intentionally encoded one version of each tool and
animal (30 tools+30 animals) during functional scanning (Fig. 1A).
The stimuli were presented one at a time for 2 s, followed by a delay
that corresponded to one of the five trial timing conditions.
Participants were asked to try to remember the images as best they
could because they would be later tested on them. Participants did not
make any responses to the images during scanning. After the conclu-
sion of the encoding phase, participants completed a self-paced old/
new recognition test outside the scanner. The test included all 60
encoded images as well as 60 similar lures (e.g., a different cat, a
different dog, a different mallet) to ensure that participants remem-
bered the specific image (e.g., the specific cat image rather than just
remembering having seen a cat; Fig. 1B). Target and lure images from
all conditions were randomly intermixed. The test was used to back-
sort the encoding items as remembered (target endorsed and lure
rejected) or forgotten (target rejected and/or lure endorsed). Targets
and lures were counterbalanced across subjects.

Our main interest was to compare, within-subjects, the utility of
different fMRI designs for pattern information analyses. For this
purpose, the 60 unique encoding items were randomly split into 5 sets
(12 stimuli, 6 tools and 6 animals, in each set) for each participant.
Each set was assigned to one of five different presentation schedules
(fMRI designs), four of which had the same total length of 288 s per
run and one of a shorter scan length of 240 s per run.

Across the five trial timing conditions, we systematically varied the
number of item repetitions and the onset-to-onset spacing of trials
(SOA) within a run (Fig. 1C). There were always 12 unique items
repeated 2–4 times per run. To test the reliability of item and category
estimates from each design, we ran the same design, with the same 12
items in a different order, in two consecutive runs. After that, a new set
of 12 items was presented across the next two runs, using a different
trial timing condition. This allowed us to evaluate pattern similarities
without contamination by autocorrelation across time points within a
single run and to avoid potential inflation of Type I error when
decoding is done within a single run (Mumford et al., 2014). The order
of the designs was counterbalanced across subjects so each design
appeared with equal frequency as the first, second, third, fourth or fifth
design during encoding.

The timing varied from slow designs with 2 repetitions per item
(12-s SOA in slow (2@12 s), 10-s SOA in slow (2@10 s)), through a
medium design with 3 repetitions per item and 8-s SOA (med (3@8 s)),
to a quick design with 4 repetitions per item and 6-s SOA (quick (4@
6 s). Slow (2@10 s) is not fully comparable to the other trial timing
conditions as any differences in that design could be attributed to
shorter total scan duration (240 s vs. 288 s for all other trial timing
conditions). However, we included it in the main report for ease of
comparison as its inclusion or exclusion in the statistical analyses did
not change any of the conclusions.

While testing the effect of jitter across the full range of SOA values
would be beyond the scope of the current study, we did include a
jittered quick design. We modeled the timing in this design after a
seminal study on pattern similarity analysis of categorical representa-
tion in visual cortices (Kriegeskorte et al., 2008b). It included a short
bookend null time at the beginning and end of each run and several 4-s
fixation trials interspersed between 4-s task trials (2 s stimulus+2 s
fixation). We also borrowed the term “quick” design from that study, as
the 2 s stimulus presentations could be in principle even closer in time

than 4 s in a true “rapid” design. As a result, trial onsets in this trial
timing condition were spaced 4 or 8 s apart, denoted as quick (4@4–
8 s). Jittered and non-jittered quick designs had the same number of
trials and the same total scan length, the only difference being that the
null time (including null trials and bookend time) in the jittered design
was distributed evenly across trials in the non-jittered version. Within
each analysis (detailed below), we also tested pair-wise comparisons
between conditions, including the comparison of jitter vs. non-jittered
quick design to assess the effect of jitter in designs with a quick SOA.

MRI scanning

Scanning was completed on a 3T Siemens Skyra at the UO Lewis
Center for Neuroimaging using a 32 channel head coil. Head motion
was minimized using foam padding. The scanning session started with
a localizer scan followed by a standard high-resolution T1-weighted
MPRAGE anatomical image (TR, 2500 ms; TE, 30 ms; TI, 1100 ms, flip
angle, 7°; matrix size, 256×256; 176 contiguous sagittal slices; FOV,
256 mm; slice thickness, 1 mm; voxel size 1.0×1.0×1.0 mm; GRAPPA
factor, 2). Functional data were acquired during the encoding portion
of the task using a multiband gradient-echo pulse sequence (TR,
2000 ms; TE, 26 ms; flip angle, 90°; matrix size, 100×100; 72
contiguous slices oriented 15° off the AC-PC line to reduce prefrontal
signal dropout; interleaved acquisition; FOV, 200 mm; voxel size:
2.0×2.0×2.0 mm; GRAPPA factor, 2; Multi-band acceleration factor,
3). The visual stimuli were projected onto a screen that was viewed
through a mirror. Each subject completed 10 runs (5 trial timing
designs, 2 runs of each). Scanning concluded with a custom anatomical
T2 coronal image (TR, 13520 ms; TE, 88 ms; flip angle, 150°; matrix
size, 512×512; 65 contiguous slices oriented perpendicularly to the
main axis of the hippocampus; interleaved acquisition; FOV, 220 mm;
voxel size, 0.4×0.4×2.0 mm; GRAPPA factor, 2). The recognition test
was completed outside the scanner.

fMRI preprocessing and analysis

Dicom files were converted to nifti format using the “dcm2nii”
function from MRIcron (https://www.nitrc.org/projects/mricron).
fMRI preprocessing and data analysis were carried out using FEAT
(fMRI Expert Analysis Tool), version 6.00, part of FSL (www.fmrib.ox.
ac.uk/fsl). The following steps were applied: motion correction within
each run using McFlirt; non-brain removal using BET; grand-mean
intensity normalization of the entire 4D dataset by a single
multiplicative factor; highpass temporal filtering (sigma=100 s) and
minimal spatial smoothing (sigma=1). The MPRAGE anatomical scan
of each subject was coregistered to their first functional volume by
rigid/affine transformations using the Advanced Neuroimaging Tools
(ANTs: http://stnava.github.io/ANTs/). The preprocessed functional
scans were used in first-level GLM models (described below) that
included FILM pre-whitening with local autocorrelation-correction as
well as motion parameters as regressors of no interest.

Two models were fit to each run, one to estimate the pattern of
activation associated with each item (e.g., cat, dog, mallet) and one to
estimate the pattern of activation evoked by each individual trial (i.e.,
trial 1, trial 2, etc). We were especially interested in the degree to which
it is possible to decode category-level and item-level information on an
individual trial basis. In order to estimate the pattern of activation
evoked by each trial, we constructed a GLM that modeled each trial as a
separate regressor (Fig. 2A). This model is also known as the least
square-all (LSA) trial model as it includes all single-trial regressors in
one model. This trial (LSA) model included 24 regressors in the Slow
designs, 36 regressors in the Med design, and 48 regressors in the
Quick designs. Each regressor was modeled as a stick function with a
single “stick” of a unit length, convolved with the canonical hemody-
namic response function as implemented in FSL (gamma function with
a phase of 0 s, a standard deviation of 3 s and a mean lag of 6 s).
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In deciding whether to include or not include temporal derivatives in
the GLM model, we chose the model that provided the best fit within each
design, in order to assess differences in decoding performance that may
persist even when the best model for the design is used. We thus ran the
trial model both with and without temporal derivatives and extracted the
contrast values for task vs. baseline in the lateral occipital cortex for each
trial timing condition as an empirical metric of model fit orthogonal to our
results of interest. More robust visual activation was estimated using the
model without temporal derivatives in quick (4–8 s) and quick (6 s)
designs, and using a model with temporal derivatives in med (8 s), slow
(10 s) and slow (12 s) designs. These effects were statistically significant for
all but the quick (6 s) design, which showed very comparable results with
either approach (Suppl. Fig. 2A). We thus included temporal derivatives
only in the med (8 s), slow (10 s) and slow (12 s) designs. The empirical
model fit estimate based on overall task-related activation ended up being
consistent with our metrics of interest (category representation, item
representation, memory effects), albeit the effect was much smaller. In
other words, excluding temporal derivatives when modeling quick designs
and including temporal derivatives when modeling slower designs yielded
optimal decoding performance for the given design. This performance was
then compared across conditions.

A prior study (Mumford et al., 2012) suggested that single-trial
estimates may be more reliable when they are extracted iteratively,
where a separate model is constructed and estimated for each trial. The
sole trial of interest is modeled in one regressor and all other trials are
modeled together as a second regressor (Fig. 2B). This modeling
approach is also known as least square-single (LSS) because only a
single trial is modeled as its own regressor during each iteration.
Another study (Abdulrahman and Henson, 2016) showed that LSA vs.
LSS modeling approaches may be advantageous under different con-
ditions. Thus, we also generated trial beta-series using this iterative
trial (LSS) model to test whether this approach may benefit some trial
timing conditions or analyses specifically. Consistent with prior reports
(Abdulrahman and Henson, 2016; Mumford et al., 2012), we found
both advantages and disadvantages of the LSS model overall, but the
pattern of results across conditions was similar to that obtained using
the trial (LSA) model. We thus provide detailed LSA results and a
summary of LSS results in the main manuscript and present the
detailed LSS results in the Supplement. Consistent with prior ap-
proaches (Abdulrahman and Henson, 2016; Mumford et al., 2012),
temporal derivatives were not included in LSS models.

Finally, our design also allowed us to compare how the trade-off

Fig. 2. Analysis strategy. A. Trial (LSA) model. BOLD response modeled using one regressor for each trial. B. Trial (LSS) model. A separate model is used to obtain an estimate for
each trial. C. Item model. BOLD response modeled using one regressor for all repetitions of each unique item.D. Category decoding via machine learning. The classifier is trained on the
activation patterns of one run and tested on the patterns from the other run of the same design. E. Indexing item-level information. Pairwise neural pattern similarities were computed
for all trials (from the trial model) or all items (in the item model) across runs. Item representation indices were computed as the difference between the neural similarity of patterns
evoked by the same item in separate runs (red arrow) and the neural similarity evoked by two different items from the same category (blue arrows). For example, if there is item-level
information, the pattern of activation evoked by a cat from run 1 should be more similar to the pattern evoked by a cat from run 2 than to those evoked by other animals.
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between the SOA and the number of repetitions of each item affects the
estimability of neural activation patterns related to each item combined
across repetitions. To estimate the activation related to each item, we
constructed an item model (Fig. 2C) consisting of 12 regressors in all
runs, one for each unique item encoded in that run (e.g., a cat
regressor, a dog regressor, a mallet regressor, etc). While there were
always 12 unique items encoded, the number of times each item was
presented varied between 2 (for slow designs) and 4 (for ”quick”
designs). Thus, each regressor was modeled as a stick function with
either 2, 3 or 4 “sticks” of a unit length, convolved with the same
canonical hemodynamic response function as the trial (LSA) model.
Temporal derivatives in the item model had similar effects as in the
trial (LSA) model (Suppl. Fig. 2B). We thus included temporal
derivatives only in the medium and slow designs. For completeness,
we are providing results with and without TD for every condition for
both trial and item models in the Supplement (Suppl. Fig. 7).

After estimating all models, we generated the beta-series represent-
ing each trial (in the trial model) or each item (in the item model)
within a run. ANTs was used to estimate realignment parameters
between an example functional image from each run and the example
functional image from the first run of every subject. These parameters
were then applied to the beta-series from each run in order to align
them across runs. The resulting realigned beta-series then served as
input patterns for classification and PSA analysis (described below).

Regions of interest

All analyses were performed in anatomically defined regions of
interest (ROIs) that were obtained at the individual participant level
using Freesurfer (https://surfer.nmr.mgh.harvard.edu/). These ROIs
were primarily chosen to encompass representative visual processing
regions and memory-related regions. We included the lateral occipital
cortex and the fusiform cortex (the posterior half of Freesurfer-derived
fusiform) as visual processing regions. The memory-related ROIS were
the hippocampus and the parahippocampal cortex, as well as the
inferior and superior parietal cortices that have previously been shown
to represent item and category information relevant to memory
behaviors (Kuhl and Chun, 2014; Lee and Kuhl, 2016; Lee et al.,
2016). The localization of the ROIs in a representative subject are
depicted in Fig. 3. Results for individual ROIs are depicted but the
differences between trial timing conditions were of primary interest
rather than differences between ROIs.

Category representation using machine-learning classifiers

The first goal of the study was to test how the trade-off between the
SOA and the number of trials influences the decoding of category-level
information (animals/tools) using a machine-learning classifier. We
chose these categories because their distinction was expected to be
subtle, providing a greater challenge for decoding compared to

categories popular for their universal robustness, such as faces vs.
scenes. All classification analyses were conducted using a support
vector machines classifier (SVM) with a linear kernel as implemented
in the PyMVPA toolbox (www.pymvpa.org) for Python (www.python.
org). As each design was scanned across two runs, each of the two
cross-validation folds used a single run of data to train the classifier
before using the other run for testing (Fig. 2D). Before training the
classifier, we performed a sensitivity-based feature selection. Within
training data only, a voxel-by-voxel one-way ANOVA was performed to
identify the voxels showing a differential response to the two
conditions. The 100 voxels with the strongest differential response to
tools and animals (as indexed by the largest F-values) were then used
as features for training the classifier. This approach is referred to as no-
peaking ANOVA feature selection, as it is blind to whether those same
voxels are differentially responsive in the testing set, avoiding bias in
the cross-validation. The trained classifier was then tested on the
second run of the given design. The roles of the two runs were then
switched and the cross-validated performance was averaged across the
two cross-validation folds. The resulting classification performance was
then averaged across subjects for each trial timing condition and ROI.
The effects of the timing condition and ROI were formally assessed
using repeated measures ANOVA with timing and region as within-
subject factors. Because the effect of ROI was not of particular interest
in this study, only the effect of timing is reported in the text.

Item representation using PSA

PSA was used to index the degree of neural item representation as
estimated in each trial timing condition. First, we calculated a pattern
similarity score for each pair of beta-series patterns across the two runs of
the same design (e.g., run1-trial1 with run2-trial1, run1-trial1 with run2-
trial2, etc). To obtain the similarity scores within each ROI, we extracted
the vectors of activation values for all voxels within that ROI and correlated
them using the Spearman's correlation coefficient r. As single-trial pattern
estimates tend to be noisy due to occasional outlier values arising from
motion or partial volume effects, Spearman's rank correlation provides a
computationally simple way to reduce possible effects of outlying values on
the similarity scores. However, the pattern of results reported here does not
depend on the similarity metric used. Pattern similarity was never assessed
within a run to avoid confounding the data with local autocorrelations and
to focus on the reliability of the estimates across runs. This resulted in
12*12=144 r-values for each design in the itemmodel and a larger, variable
number of r-values for each design in the trial model (24*24=576 r-values
in the slow designs, 36*36=1296 r-values in the medium design, and
48*48=2304 r-values in the quick designs). The resulting r-values were
Fisher z-transformed and sorted into three groups depending on whether
they indexed the similarity of patterns evoked by: (1) the same item (e.g.,
cat from run 1 to cat from run 2), (2) two distinct items from the same
category (e.g., cat from run 1 to dog from run 2), or (3) two items from
different categories (e.g., cat from run 1 to hammer from run 2). Item

Fig. 3. Regions of interest from a representative subject. Regions were identified in the native space of each subject using an automated segmentation in Freesurfer. The average
number of voxels across participants in each region was 1150 (sd=101) in the hippocampus, 590 (sd=63) in the parahippocampal cortex, 2128 (sd=331) in the posterior fusiform, 2935
(sd=353) in the lateral occipital cortex, 3807 (sd=491) in the inferior parietal cortex, and 3443 (sd=474) in the superior parietal cortex.
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representation indexes were computed for each participant as the normal-
ized mean difference (Cohen's D) between the scores of patterns evoked by
the same item vs. patterns evoked by items in the same category across
runs (e.g., how much more similar is the cat from run 1 to the same cat
from run 2 than to other animals from run 2; Fig. 2E). The resulting item
representation estimates from the six ROIs were entered into a repeated-
measures ANOVA with trial timing and ROI as factors (only the effects of
trial timing are reported).

Item representations and subsequent memory effects

When an item is repeated, memory for its prior encounters may be
reactivated, leading to a reinstatement of the cortical activation pattern
present during prior encoding events (Howard and Kahana, 1999;
Manning et al., 2011; Polyn et al., 2005). This memory reactivation
may contribute to the neural pattern similarity across repetitions of the
same item, enhancing item representation. As a consequence, items
that are remembered should show more similar neural patterns across
repetitions than items that are forgotten. Indeed, several studies have
found such memory-based effects on neural pattern similarity (Kuhl
and Chun, 2014; Xue et al., 2010). We thus compared memory effects
on item representations across trial timing conditions as a third
dependent measure in our study. To obtain a memory effect index in
each condition, we first sorted the pattern similarity scores for the same
items across runs (e.g., cat from run 1 to cat from run 2; dog from run 1
to dog from run 2) based on whether they were subsequently
remembered or forgotten, separately for each subject and trial timing
condition. Within each condition, we then computed the normalized
mean difference (Cohen D) between the Fisher z-transformed similarity
scores for remembered vs. forgotten items. Positive scores signal
greater pattern similarity for items subsequently remembered than
for those forgotten. Subjects that remembered every item in a given
condition were excluded from the analysis of that condition. The
number of subjects that had at least 1 forgotten trial was 29 in the
quick (4@4–8 s), med (3@8 s) and slow (2@10 s) conditions and 25 in
the quick (4@6 s) and slow (2@12 s) conditions. The overall memory
effect and the interaction between memory and trial timing condition
were formally assessed using a repeated-measures ANOVA. For this
analysis, participants were excluded list-wise if they were missing
forgotten trials in any condition, resulting in 18 subjects included in
the ANOVA.

Results

Memory performance

The average proportion of remembered items (Fig. 1D) was
approximately 80% and did not differ between trial timing conditions
(no significant main effect of condition in the repeated-measures
ANOVA, F(4,136)=1.05, p=0.381). There was also no difference in
hit rates or false alarm rates between conditions (both F < 1, Suppl.
Fig. 3). The reaction times (Fig. 1E) were marginally different across

conditions (F(4,136)=2.24, p=0.068). Post-hoc pairwise differences
showed slower reaction times in the slow (2@10 s) condition than in
the med (3@8 s) condition (t(34)=2.85, p=0.007).

Category representations via SVM classification

We first tested the degree to which visual categories (animals vs.
tools) can be differentiated from activation patterns in the selected
ROIs in each trial-timing condition. The trial (LSA) results, presented
in Fig. 4, show that classification was above chance in every condition
for several ROIs and on average across ROIs. Classification accuracy
did not differ significantly among trial timing conditions (main effect of
timing F < 1, linear contrast effect F(1,34)=1.43, p=0.24). The iterative
trial (LSS) model provided equivalent results to the trial (LSA) model
(Suppl. Fig. 4, top panel), including the same overall classification
accuracy (LSA grand mean=0.586, se=0.006; LSS grand mean=0.584,
se=0.006). The item model yielded an overall greater classification
accuracy (grand mean=0.616, se=0.009), with increasing decoding
accuracy in the fixed trial-timing designs from slow to quick designs
(Suppl. Fig. 4, bottom panel).

Item representations via PSA

The item-level information estimates from the trial (LSA) model are
depicted in Fig. 5. A repeated-measures ANOVA showed an intercept
significantly above zero (grand mean=0.065, se=0.006, F(1,34)=126, p
< 0.001), indicating a reliable item representation on average across
conditions and ROIs. The magnitude of item representation estimates
increased linearly with longer trial timings (main effect of timing:
F(4,136)=2.22, p=0.07, linear increase F(1,34)=7.28, p=0.011),
although it was above chance in all trial timing conditions (lowest
mean item representation across ROIs=0.044, se=0.008, t(34)=5.39, p
< 0.001). Post-hoc pair-wise comparisons showed a greater item
representation in the slow (2@12 s) design than in the two quick
designs (both t(34) > 2.24, p < 0.032). A similar pattern of results was
observed using the trial (LSS) model, with overall item representation
estimates from the LSS method marginally greater than the LSA
method (Suppl. Fig. 5, top panel). The item model yielded significantly
greater item representation estimates than the trial (LSA) model, which
did not differ between conditions (Suppl. Fig. 5, bottom panel).

Item representations and subsequent memory effects

Consistent with a prior report (Xue et al., 2010), we found a reliable
effect of memory on item representations (grand mean=0.053,
se=0.023, F(1,17)=5.05, p=0.038; Fig. 6). Marginal differences be-
tween conditions (F(4,68)=2.35, p=0.063) were driven by an advantage
for both the slow (2@12 s) and the jittered quick (4@4–8 s) designs
(quadratic effect of timing F(1,17)=4.84, p=0.042), which were the only
two designs in which the memory effects were significant on average
across ROIs (quick (4@4–8 s) t(28)=1.8, p=0.038; slow (2@12 s) t(24)
=2.69, p=0.006). Post-hoc pairwise comparisons showed the slow (2@

Fig. 4. Category-level decoding accuracy from SVM classification. The error bars represent across-subject standard error of the mean. The dashed line represents a theoretical chance of
0.5 (two categories). hip=hippocampus, phc=parahippocampal cortex, pfus=posterior fusiform, lo=lateral occipital cortex, ipar=inferior parietal cortex, supar=superior parietal cortex,
average=decoding accuracy averaged across ROIs.
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12 s) design outperformed all shorter fixed trial timing designs (all
fixed duration SOA conditions p < 0.05, comparison to jittered quick
(4@4–8 s) p=0.051). The quick (4@4–8 s) design did not differ
significantly from other conditions. The memory effects estimated
using the trial (LSS) model did not reach significance or differ between
conditions (Suppl. Fig. 6, top panel). The item model showed results
comparable to those of the trial (LSA) model with an advantage for the
slow trials (Suppl. Fig. 6, bottom panel).

Discussion

The current gold standards of fMRI design for univariate analyses –
slow event-related design and rapid jittered design – are inconvenient
from an experimental perspective and may not be optimal for pattern-
information analyses. This study empirically tested the effects of
different fMRI trial timing designs on the estimability of category-level
and item-level neural representations during the encoding of animal
and tool images. We compared trial timing conditions with a fixed SOA
ranging from a quick design with a 6 s SOA to slow designs with a 12 s
SOA, as well as a quick design in which the SOA was jittered. The trial
timing conditions further varied in the number of repetitions of each
image, so that the scan time was about equal across designs. Therefore,
the slow designs fit fewer trials into a run than did quick designs.
Results showed that category-level information (tools vs. animal) on a
trial-by-trial level was equally detectable using SVM classification in all
trial-timing conditions, allowing flexibility in selecting an fMRI trial
timing design when category-level information is of primary interest.
The detectability of item-level information (cat vs. dog vs. lion) on a
trial-by-trial level using PSA increased linearly with increased SOAs,
with the slow 12 s SOA design outperforming the quick designs.
Finally, the trial-by-trial item similarity across repetitions was greater
for items subsequently remembered than for those forgotten, but this
effect was best detected with slow 12 s trials. The memory effects were
also detectable in the jittered quick design, although they were less
pronounced.

We also compared the trial timing conditions using GLM models in
which the trial-by-trial information is not of interest and instead
representations of individual items are modeled across repetitions. In

such models, both category-level and item-level information are better
estimated than in trial-by-trial models across all trial timing condi-
tions. The category-level decoding increased linearly from slow to quick
for fixed SOA designs while item-level information was equally estim-
able under all trial timing conditions. These findings demonstrate that
designs optimized for the detection of univariate contrasts are not
necessarily optimized for multivariate pattern information analyses.
Optimal designs may depend on the specific pattern-information
analysis of interest and the necessity of decoding the information on
a trial-by-trial basis. Furthermore, for many analyses, researchers may
have a much wider range of trial timing options than is typically
considered.

Trial timing and category decoding

Since the seminal pattern-information decoding paper by Haxby
et al. (2001), many studies have purposefully incorporated distinct
classes of visual images, such as faces, objects, or scenes, into their
fMRI research designs. These studies have shown the robustness of
MVPA in decoding the category of the currently viewed content (Haxby
et al., 2001; 2011; Kriegeskorte et al., 2008b; O'Toole et al., 2005;
Proklova et al., 2016) or even of the retrieved memory content
(Gershman et al., 2013; Kuhl et al., 2011; Lewis-Peacock and
Norman, 2014; Polyn, 2005) from distributed activation patterns in
the visual cortex. The current study further highlights the utility and
robustness of the classifier-based decoding approaches, even for subtler
category distinctions within the object category. The patterns evoked by
the encoding of animal images were reliably differentiable from the
patterns evoked by the encoding of tool images on a trial-by-trial basis
under all timing conditions in many regions. Within each condition,
this was achieved even with just two runs available for cross-validation,
corresponding to less than 5 min worth of training data per cross-
validation fold. The iterative modeling of individual trials, also known
as the LSS method, yielded the same performance as a trial model that
included all individual trial regressors in a single model (the LSA
method). For both the LSA and the LSS models, we observed no
reliable differences between different trial timing conditions on trial-
by-trial animal/tool category decoding accuracy. This suggests that

Fig. 5. Item-specific pattern similarity across runs. Bar height represents the item representation, indexed as a normalized mean difference (Cohen's D) between the mean neural
similarity of the same items across runs to similarity of different items from the same category across runs, averaged across participants. Error bars represent across-subject standard
error of the mean.

Fig. 6. Pattern similarity reflecting subsequent memory, shown by the normalized difference between pattern similarity scores across runs for items subsequently remembered vs.
forgotten in each condition. Subjects were excluded on a condition-by-condition basis when they lacked forgotten trials in that condition. Error bars denote across-subject standard error
of the mean.
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researchers planning to employ classifier-based approaches to visual
category decoding may have a range of options available and can base
their choice on other constraints, such as the psychological suitability
of the design or a plan to also estimate univariate effects. When trial-
by-trial information is not of interest, modeling all the repetitions of
the same item in a single regressor improves category decoding
compared to trial-by-trial models. In such cases, the quick trial timing
with a fixed 6 s SOA provided better category decoding than the slow
designs. Therefore, in such studies, long SOAs may be sacrificed in
favor of increased number of trials.

Trial timing and item-level representations

The current study also demonstrated the detectability of item-level
information, indexed as the normalized difference between across-runs
pattern similarity for the same item and the pattern similarity of
different items from the same category. The item-level information on a
trial-by-trial level was best detected with fewer, slower trials irrespec-
tive of whether individual trials were modeled via the LSA or LSS
method. Overall, the iterative LSS method provided a marginally
greater estimate of item representations. When item-level information
at the trial level was not of interest, using the item model provided a
significant boost in item-level estimates, with no significant differences
among conditions.

The trial-by-trial pattern similarity scores of individual items across
their repetitions were greater for subsequently remembered items than
for those forgotten. The memory effects were best detected using slow
trials with 12 s onset-to-onset timing. These results are consistent with
prior work showing that slow trials are necessary to detect trial-by-trial
differences in item representations across learning (Visser et al., 2016).
Therefore, experiments planning to use PSA on single trial level or
experiments constrained to a single presentation per item may benefit
from slow trial designs, even if it means fewer trials overall.
Importantly, however, the trial-by-trial item-level information was
detectable in the present study in most regions in each trial-timing
condition. Furthermore, the memory effects were observed not only
with slow trials but also in the jittered quick design. Thus, faster trials
do not preclude item-specific decoding.

Interestingly, the memory effects on item representations were
numerically strongest in the LSA model. These findings are in line with
prior modeling work that showed an advantage of the LSA model when
the trial-by-trial variability of the neural response is high or is of
interest (Abdulrahman and Henson, 2016). While models that include
multiple events in a single regressor typically provide an advantage in
terms of more stable and smoother parameter estimates (Abdulrahman
and Henson, 2016), they ignore the potential trial-by-trial variability,
which ends up in the error term. In this case, items that are
subsequently forgotten may not be recognized as being the same across
repetitions, and may be represented somewhat differently on each trial,
lessening the sensitivity of item models that aggregate across repeti-
tions. For similar reasons, LSS models may not capture all the variance
arising from closely proximal trials in the combined regressor, and
either erroneously attribute that variance to the trial that is currently
being modeled by its own regressor, or leave that variance unexplained
in the error term. Modeling each trial via LSA may provide the most
sensitive method for capturing trial-by-trial effects (Abdulrahman and
Henson, 2016). Alternatively, a less restrictive version of the LSS
model, such as one that splits the remaining trials based on conditions
rather than combining them in a single regressor, may also avoid some
of the problems associated with uncaptured variability (Turner et al.,
2012).

Different GLM approaches and pattern-information analyses

Our first interest was to determine the degree to which category
information and item-level information are detectable on a single-trial

basis. We have taken two approaches to estimating the trial-by-trial
activation patterns: LSA, which models all trials by a separate regressor
within a single GLM model, and LSS, which iteratively models one trial
by a separate regressor and all other trials by a second regressor to
improve the stability of the single-trial estimates (Mumford et al.,
2012). As noted above, we found no difference between these methods
for category decoding, a marginal LSS advantage for detecting item-
level information, and a numerical LSA advantage for detecting
memory effects that exploits the variability in trial-by-trial estimates
across repetitions. The relative benefit of LSA vs. LSS for different
analyses differed minimally across the trial timing conditions. Thus,
within the timing range considered here, the choice of GLM model for
obtaining single trial estimates (LSA vs. LSS) should be primarily
driven by the expected trial-by-trial variability and the effects that the
pattern-information analysis aims to capture (Abdulrahman and
Henson, 2016).

Trial timing seems important, however, for decisions regarding
whether or not to include temporal derivatives into GLM models. Here,
including temporal derivatives in the quick conditions, with SOAs as
low as 4 or 6 s, yielded worse univariate and multivariate results than
when temporal derivatives were left out. In contrast, including
temporal derivatives in conditions that had SOAs of at least 8 s
improved the same results (compared to the GLM versions without
temporal derivatives), even in the trial-by-trial LSA model. Adding
temporal derivatives into GLM models has been shown to generally
improve model fits by accounting for small hemodynamic response lag
differences (Calhoun et al., 2004; Friston et al., 1998; Worsley and
Taylor, 2006), but may add collinearity to condition-rich designs with
closely spaced trials. Our results provide new insights into how this
trade-off affects GLM estimates under varying trial timing scenarios
that can be used to inform future investigations. Please note that
following prior research (Mumford et al., 2012, 2014), we did not
include temporal derivatives when obtaining single trial estimates
using the LSS method, but it is in principle possible and could be
beneficial with slower trials.

Our data also suggest that the advantage for detecting item-level
information using a slow design is not fully explainable by differences
in the number of regressors that need to be estimated with a limited
number of observations (time points) in a run. First, the trial (LSS)
models and the item models have the same number of regressors in
each trial timing condition (the LSS model had only two task-related
regressors+motion parameters in each iteration, the item model always
had 12 task regressors+motion parameters). Yet, the trial LSS model
showed a similar slow design advantage as the LSA model in item
representation estimates and the item model showed a similar slow
design advantage in detecting memory effects. Additionally, the trial
LSA model does scale with the number of trials. However, the number
of regressors ended up equal between quick conditions (without
temporal derivatives) and slow conditions (with temporal derivatives).
Thus, the onset-to-onset timing of trials may be a stronger boundary
condition for detecting item-level information than the number of
regressors in GLM models per se.

The effect of jitter on pattern-information analyses

For standard univariate analyses with few conditions, jittered trial
onsets enable a faster trial timing and a better contrast detection than
regularly spaced trials (Burock et al., 1998). One question of the
current study was whether SOA jittering is equally useful for pattern-
information analyses and condition-rich designs, or whether a regular
onset-to-onset trial timing may yield similar results. We reasoned that
the benefits of jitter are limited in condition-rich designs, for example
because the random ordering of trials from different conditions may
already ensure an uncorrelated predicted BOLD response for each
condition. Furthermore, jitter may introduce some psychological
variability between long and short trials that would be reflected in
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the BOLD activation patterns, adding noise to the category and item
representation estimates. As prior studies have shown that single-trial
estimates are unlikely to be reliable with trial timing less than 4–6 s
(Abdulrahman and Henson, 2016; Mumford et al., 2012; Visser et al.,
2016), our study compared two “quick” conditions with an equal
number of trials that were either jittered with an SOA of 4 or 8 s
(Kriegeskorte et al., 2008b) or spaced regularly every 6 s. We found no
significant pair-wise differences between these conditions in any
analyses. For the trial-by-trial estimates, the jittered version of the
quick design showed a numerical advantage compared to the non-
jittered version across analyses. For the item-by-item estimates with a
single regressor across item repetitions, the non-jittered version
provided a numerical advantage. Thus, our data suggest that jitter
may not be as crucial in condition-rich designs as it is for standard
univariate analyses and researchers may consider whether or not jitter
is likely to provide a benefit in a given study. Factors such as possible
behavioral effects of jitter or plans to also conduct univariate analyses
may tip the scales one way or the other.

Limitations

Pattern-information analyses have been applied to a wide range of
questions and the scope of the current study is limited in comparison.
For one, to investigate the reliability of category- and item-level
pattern-information analyses in different fMRI designs, this study used
images of common items from well-learned categories. A wide range of
studies implementing pattern-information analyses have relied on
principally similar categories and stimuli and thus may be informed
by the current study when planning their design. However, pattern-
information analyses have also been applied to tracking the changes in
representation of new artificial stimuli with arbitrary relations
(Schlichting et al., 2015), decoding non-sensory information such as
intentions (Haynes et al., 2007) or decoding process-level information
such as whether a person is engaging in encoding or retrieval on a given
trial (Richter et al., 2016). It is unclear whether findings from the
current study are fully generalizable to such applications. Furthermore,
the advantage of the slow trials for trial-by-trial item-level decoding in
the present study is likely due to both fMRI factors such as overlapping
hemodynamic responses to closely spaced trials that cannot be fully
differentiated on a trial-by-trial basis as well as cognitive factors, such
as a possibly shallower encoding during short trials. Thus, the relative
advantage of slow trials may diminish in other cognitive paradigms
where the SOA has a smaller impact on cognitive processing.

Prior research (Stark and Squire, 2001) showed that the direction
and amplitude of a univariate signal may be affected by an inclusion of
a baseline task—a filler task aimed to control cognitive processes, such
as mind-wandering, in between trials of interest. We used a passive
baseline (passive viewing of a fixation cross) during the inter-stimulus
intervals. While a manipulation of the baseline task was beyond the
scope of the current study, it would be interesting to test the degree to
which an inclusion of a baseline task may affect pattern-information
analyses. It is, however, worth noting that an unstructured null time is
unlikely to be strongly detrimental to the decoding approaches tested
in the current study. If it were, its effect would presumably be worst in
the slow design with long inter-stimulus intervals. However, this design
proved to be the most reliable for estimating item-level information on
a trial-by-trial basis.

One of our dependent measures—the memory effects on pattern
similarity across repetitions—was less powered than our other two
measures as several participants remembered all the items in some of
the conditions. Despite the decreased power, the memory effects were
reliable overall. The observed memory effects, however, suggest that it
may be impossible to assess the reliability of item representation
estimates that would not be influenced by memory. The repetition of an
item may trigger reinstatement of a prior encounter with the item and
its associated context (Howard and Kahana, 1999; Manning et al.,

2011; Polyn et al., 2005). This memory-based reinstatement would
contribute to the neural pattern similarity for the same items across
repetitions, as evidenced by the significant memory effects obtained in
the current study. Thus, item representation estimates across the brain
are likely influenced by item memory effects, even in studies that do not
explicitly focus on memory.

Despite these limitations, we believe that our findings are informa-
tive beyond the fields of visual category representation or memory.
They suggest the possibility of successfully employing a wider range of
trial timings when designing an fMRI study than is typically considered
and highlight the factors that should influence trial timing choices. Our
results also provide converging evidence for the advantage of slow trials
to detect trial-by-trial variability across events that reflects learning
(Visser et al., 2016). The comparison of different GLM approaches (LSS
vs. LSA, inclusion vs. exclusion of temporal derivatives) may also
inform future GLM choices irrespective of the research question.

Conclusions

The current study investigated the optimal balance between the
number of trials and the SOA within a fixed duration scan for pattern-
information analyses. For many analyses, category-level and item-level
information were similarly detectable across all trial timing conditions.
When differences were detected, category decoding benefited from a
larger number of regularly spaced trials while slow 12-s trials allowed
for a better detection of item-level information and memory status of
items, especially on a single trial level. The jittered and non-jittered
versions of the quick trial timing performed similarly on all metrics.
Notably, category-level and item-level information were, in the current
study, detectable to some degree in most conditions, with less than ten
minutes of scan time per condition, further highlighting the utility of
pattern-information analyses in cognitive neuroscience research. The
results may inform the choice of trial timing and analytical approaches
when considering decoding analyses in condition-rich designs.
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