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Abstract 
 

 Building conceptual knowledge that generalizes to novel situations is a key function of 

human memory. Category-learning paradigms have long been used to understand the 

mechanisms of knowledge generalization. In the present study, we tested the conditions that 

promote formation of new concepts. Participants underwent one of six training conditions that 

differed in the number of examples per category (set size) and their relative similarity to the 

category average (set coherence). Performance metrics included rates of category learning, 

ability to generalize categories to new items of varying similarity to prototypes, and recognition 

memory for individual examples. In categorization, high set coherence led to faster learning and 

better generalization, while set size had little effect. Recognition did not differ reliably among 

conditions. We also tested the nature of memory representations used for categorization and 

recognition decisions using quantitative prototype and exemplar models fit to behavioral 

responses. Prototype models posit abstract category representations based on the category’s 

central tendency, whereas exemplar models posit that categories are represented by individual 

category members. Prototype strategy use during categorization increased with increasing set 

coherence, suggesting that coherent training sets facilitate extraction of commonalities within a 

category. We conclude that learning from a coherent set of examples is an efficient means of 

forming abstract knowledge that generalizes broadly.      

 

Keywords: category learning, long-term memory, generalization, computational modeling   
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Concept learning is a cognitive process in which individuals organize related pieces of 

information in memory by linking them to a shared label. Forming concept representations has 

been shown to broadly affect cognitive processing, including affecting perception of related 

information (Van Gulick & Gauthier, 2014), facilitating new learning (Murphy & Allopenna, 1994), 

and allowing for rapid decision-making (Koriat & Sorka, 2015; Rips, Shoben, & Smith, 1973). 

Further, category knowledge can affect processing across a variety of domains ranging from 

visual perception (Bornstein & Korda, 1984), to speech processing (Liberman, Harris, Hoffman, 

& Griffith, 1957), emotion recognition (Etcoff & Magee, 1992), and social biases (E. R. Smith & 

Zarate, 2011). One hallmark of category knowledge is the ability to classify never-before-seen 

examples – generalizing acquired knowledge to novel situations. While psychologists have long 

sought to understand the role of generalized knowledge in cognition (Bartlett, 1932), there are 

still open questions about what types of learning experiences best promote generalization and 

how generalization relates to memory for individual items.  

A key finding from early studies of category learning was that subjects were better able 

to generalize when there was high variability among the training items compared to when 

training items were relatively coherent (Homa & Vosburgh, 1976; Posner & Keele, 1968). The 

benefit of training on sets in which individual items were atypical of the overall category was 

particularly apparent for generalization to items at the category boundary. These results 

suggested that exposing individuals to training sets with high variability among examples led to 

a greater understanding of the breadth of the category structure, making category knowledge 

robust and highly transferable. These studies, however, trained subjects to a performance 

criterion, such as a certain proportion correct on training exemplars. Because subjects trained 

on variable as opposed to coherent sets took significantly longer to reach such a criterion, the 

effect of training set coherence was confounded with the amount of training received (Hintzman, 

1986). Others who equated the amount of training found quicker learning and better 

generalization following training on coherent sets of examples (Hintzman, 1984; Homa & 
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Cultice, 1984; Peterson, Meagher, Herschel, & Gillie, 1973), although not always for items 

furthest from the category center (Peterson et al., 1973). Thus, training on coherent sets may be 

more efficient than training with variable examples in terms of the amount of training needed to 

achieve good generalization performance. However, training on coherent sets may make it 

more challenging to classify new items near category boundaries. 

It is also possible that the coherence of training examples affects the nature of the 

representations underlying category knowledge, regardless of the effects on accuracy. There 

has been a long-standing debate about how categories are represented and the type of 

information accessed to make generalization judgments. Exemplar models posit that categories 

are represented by individual category members that have been encountered in the past, and 

that generalization involves classifying new items to the category with the greatest similarity to 

specific items stored in memory (Kruschke, 1992; Lamberts, 1994; Medin & Schaffer, 1978; 

Nosofsky, 1988; see Figure 1A for conceptual illustration). In contrast, prototype models posit 

that abstract category representations exist instead of (or in addition to) representations of 

individual items. These models propose that categories are represented by the central tendency 

across individual category members – an idealized category prototype that contains all the most 

typical features of category members (Homa & Little, 1985; Minda & Smith, 2002; Posner & 

Keele, 1968; Figure 1A for conceptual model illustration). Generalization involves comparison of 

new items to relevant category prototypes, with the new item assigned to the category with the 

most similar prototype (Hampton, 1995; Reed, 1972; Rosch & Mervis, 1975). 

Both classes of models often account for behavioral categorization responses well 

(exemplar meta-analysis: Nosofsky, 1988; prototype meta-analysis: J. D. Smith & Minda, 2000). 

Recent work has also identified brain regions whose signal tracks predictors generated from the 

exemplar model (Mack, Preston, & Love, 2013) and distinct regions tracking prototype model 

predictors (Bowman & Zeithamova, 2018). One possibility is that strong empirical support for 

each of these models emerges because individuals are capable of forming both types of 
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representations under some circumstances (Medin, Altom, & Murphy, 1984). For example, 

training on more variable sets may promote formation of exemplar representations because 

category members are relatively distinct from one another, and distinctiveness often facilitates 

encoding of individual items (Konkle, Brady, Alvarez, & Oliva, 2010; Vokey & Read, 1992; 

Winograd, 1981). In contrast, the greater overlap between items within a category for coherent 

sets may promote extraction of common features (Hampton, 1979; Rosch & Mervis, 1975), 

leading to greater reliance on prototype representations.  

In addition to training set coherence, there is also some evidence across past studies 

that the number of training examples affects the relative fit of prototype versus exemplar 

models. Studies finding support for the exemplar model have frequently trained participants to 

discriminate between categories using a small number of category examples (Blair & Homa, 

2003; Lamberts, 1994; Medin & Schaffer, 1978; Palmeri & Nosofsky, 1995), whereas studies 

finding support for prototype models tend to use larger training sets (Homa, Sterling, & Trepel, 

1981; Minda & Smith, 2001). This difference in representations may arise because encoding 

individual examples becomes more difficult as their number increases (Murdock, 1962), 

whereas the number of individual items may have less of an impact on prototype extraction.  

One goal of the current study was to resolve conflicting claims regarding the benefits of 

coherence vs. variability of input on concept learning (Hintzman, 1984; Homa & Cultice, 1984; 

Homa & Vosburgh, 1976; Peterson et al., 1973; Posner & Keele, 1968). We predicted that 

training on more coherent training sets would facilitate extraction of abstract prototype 

information, leading to fast learning and better generalization. Demonstrating that coherence of 

category exemplars impacts the nature of the concept representation formed would also help 

resolve conflicting neuroimaging findings regarding the nature of concept representations in the 

brain (Bowman & Zeithamova, 2018; Mack et al., 2013). Second, small categories may be well 

suited to exemplar representations, but reliance on prototype representations may increase with 

larger set sizes because prototypes can economically represent categories when the number of 
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items to individually encode becomes large (Minda & Smith, 2001). Thus, we hypothesized that 

prototype reliance may increase with larger set sizes. To test these hypotheses, participants 

were trained to discriminate between two categories using study sets varying in the coherence 

and the number of category examples. We then compared groups trained on different sets in 

terms of ease of learning (training accuracy), generalization success for new items, and the 

types of representations (exemplar, prototype) underlying generalization judgments. 

The ability to remember specific details and the ability to generalize across experiences 

are typically studied in distinct lines of research.  However, testing item memory for the same 

stimuli and in the same participants as categorization can provide new insights that can inform 

current theories of adaptive memory function. First, different generalization models make 

distinct predictions about the relationship between item memory and memory generalization. 

Exemplar accounts posit that both types of decisions are based on a single representation, 

making the prediction that the ability to recognize items and categorize them should be linked 

(Hintzman, 1984; Nosofsky, 1988). Theories that posit the existence of multiple memory 

representations differ in how they conceptualize the interactions between memory systems. 

Some assume that representations compete, leading to trade-off between memory for individual 

experiences and the ability to generalize (Poldrack & Packard, 2003; Zeithamova, Schlichting, & 

Preston, 2012). Alternatively, specific and generalized representations may be relatively 

independent of one another, with abstract representations forming alongside item specific ones 

(Brunec et al., 2018; Collin, Milivojevic, & Doeller, 2015; Schlichting, Mumford, & Preston, 2015; 

Schlichting, Zeithamova, & Preston, 2014). Recent studies have explicitly tested these 

predictions, but in a different generalization paradigm and with conflicting results (Banino, 

Koster, Hassabis, & Kumaran, 2016; Carpenter & Schacter, 2017, 2018).   

Second, measuring performance and the type of representation relied on for recognition 

vs. categorization decisions can help us assess representational flexibility. In particular, while 

categorization decisions can be made successfully based on either exemplar or prototype 
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representations, decisions such as old/new recognition require memory for individual 

experiences that are not maintained in the prototype representation. As such, stronger evidence 

of exemplar-based responding may emerge during recognition compared to categorization, 

which would demonstrate that participants can form multiple types of representations during 

learning to be flexibly utilized to inform distinct judgments. Thus, a secondary goal of the current 

study was to address these questions by including an old/new recognition task for training items 

and novel category examples. This allowed us to test how training category structure affects 

memory for individual items, how recognition relates to generalization, and to what degree 

participants can flexibly shift between different representations when making recognition as 

compared to categorization judgments. We hypothesized that less coherent category structures 

and small training sets would result in better recognition accuracy due to more distinctive 

encoding of individual items, indicating a trade-off between memory specificity and 

generalization.  

 
Method 

 
Participants 

One hundred and seventy-six participants from the University of Oregon completed the 

experiment for course credit or monetary compensation. A total of thirteen participants were 

excluded for failure to complete the entire experiment (2), failing to respond on more than 30% 

of trials during either categorization or recognition (5), or only using one of the two responses 

during either the recognition or categorization phase (6), leaving data from 163 participants 

reported in all analyses (107 female, mean age = 19.34 years, SD age = 2.23 years, age range 

= 18-34 years). Participants were randomly assigned to one of six experimental conditions that 

differed in the stimulus set used during training. Condition names reflect the training set size (as 

exemplars per category) and training set coherence, measured as average exemplar typicality 

(the percent of features that an exemplar shares with a category prototype, see Materials). 
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Table 1 lists demographic information separated by training condition. The training condition 

with a set size of 8 and an average of 75% typical features has twice the sample size because 

there were two versions of this condition (described below). As we found no differences 

between these versions in terms of rate of learning, final training accuracy, generalization 

accuracy, or recognition accuracy, we collapsed across them in all analyses. All participants 

completed written informed consent, and all procedures were approved by the University of 

Oregon’s Institutional Review Board. 

  
Table 1 
 
Demographic information separated by training set 
Training Set n (n females) Mean age (SD age, age range) 
5 items: 60% typical 22 (14) 18.82 (1.56, 18-25) 
6 items: 67% typical 25 (17) 18.64 (1.08, 18-21) 
10 items: 70% typical 23 (16) 20.70 (4.18, 18-34) 
7 items: 72% typical  23 (16) 19.30 (2.03, 18-27) 
8 items: 75% typical  45 (28) 19.20 (1.14, 18-22) 
5 items: 80% typical 25 (16) 19.52 (2.31, 18-28) 
  
 
Materials 

The complete stimulus set is freely available through the Open Science Framework 

(Bowman & Zeithamova, 2019; https://osf.io/8bph2).	Stimuli consisted of cartoon animals that 

varied along 10 binary dimensions: color (yellow/grey), foot shape (clawed/webbed), leg size 

(thin/thick), body shape (squared/circular), tail shape (devil tail/feather tail), body dot orientation 

(vertical/horizontal), neck pattern (stripes/thorns), head shape (with beak/with horn), crown 

shape (crescent/comb), and head orientation (forward/up). One stimulus was chosen randomly 

for each subject from a set of four possible prototypes to be the prototype of category A. The 

stimulus that shared no features with the category A prototype served as the category B 

prototype. The two possible versions of each feature can be seen across the two prototypes 

shown on Figure 1B. Physical similarity between all stimuli was defined based on the number of 

shared features. Category A stimuli were those that shared more features with Prototype A than 
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Prototype B. Category B stimuli were those that shared more features with Prototype B than 

Prototype A. Stimuli equidistant from the two prototypes were not used in the study. We refer to 

the percentage of features that an exemplar shares with its category prototype as its typicality 

(e.g., 8 out of 10 shared features = 80% typical). In contrast to research on natural categories, 

where the term typicality may refer to subjective typicality ratings, here it is used only as a 

descriptive term for the proportion of category-consistent features an item has.	

 

 
 

Figure 1. Category-learning task. A. Category representations and generalization to new items 
under the assumptions of the exemplar and prototype models. Exemplar: categories are 
represented as individual exemplars. New items are classified into the category with the most 
similar exemplars. Prototype: categories are represented by their central tendencies 
(prototypes). New items are classified into the category with the most similar prototype.  B. 
Example stimuli. The leftmost stimulus is the prototype of category A and the rightmost stimulus 
is the prototype of category B, which shares no features with prototype A. Members of category 
A share more features with prototype A than prototype B and vice versa for members of 
category B. Stimulus coherence is computed by dividing the number of prototypical features by 
the total features (10) to compute the percentage of typical features. C. Participants underwent 
feedback-based training with one of six possible training sets that varied the size of the training 
set and the coherence of the examples. D. In recognition, participants were shown training (old) 



Training set effects on concept generalization 10 

items and never seen category members and made old/new judgments. E. In categorization, 
participants were shown training (old) items and never seen category members and made 
categorization judgments without feedback. 
 

Training sets. Six training sets were created that varied in set size and set coherence. 

Set size was defined by the number of individual category exemplars from each category 

presented during training, with sets including 5, 6, 7, 8, or 10 items per category. Set coherence 

was defined by the average percentage of shared features between training stimuli and their 

respective prototypes. This meant that in more coherent training sets (compared to lower 

coherence training sets), there was also greater within-category similarity and smaller between-

category similarity of the training items. This difference in training sets did not, however, extend 

to the category as a whole: the categories from which the training examples were selected were 

identical across groups, and the structure of the generalization items was the same for all 

subjects (see recognition and categorization sets below).  

All training sets were constrained so that all individual features within a set were equally 

predictive of category membership. Furthermore, we avoided using the prototypes and items 

that differed from prototypes by only one feature in the training sets. Items equidistant (sharing 5 

features with each prototype) were not used in any phase of the experiment. Thus, training 

items were limited to those that shared 6, 7 or 8 features with their respective prototypes, and 

each training item differed from all other training items by at least 2 features. We then aimed to 

generate as many training sets as possible that would satisfy the constraints on the number of 

training stimuli, equal predictivity of individual features, and the typicality of the training items 

included. The 60% typical condition consisted of only 60% typical items, the 80% typical 

condition consisted of only 80% typical items. All other training sets contained a combination of 

typicality levels. The average coherence values in the resulting sets were 60%, 67%, 70%, 72%, 

75%, and 80% category-typical features. Table 1 lists the generated training sets, including set 

size and average coherence for each set. Appendix A includes training set structures for all 

conditions and a description of how these sets were generated. As noted above, we generated 
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two sets with 8 items at 75% average typicality: one with 4 items that shared 8 features with the 

prototype and 4 items that shared 7 features with the prototype, and one with 6 items that 

shared 8 features with the prototype and 2 items shared 6 features. They were collapsed into a 

single condition in all reported analyses because their results did not differ. While our approach 

allowed us to test a wide variety of training sets, the constraints meant that set size and set 

coherence were not fully crossed. We thus employed multiple regression approach rather than 

factorial ANOVA when aiming to separate the effect of training set size and training set 

coherence on behavior.  

Recognition and categorization sets. In addition to old (training) items that differed 

based on the initial training condition, categorization and recognition tests included 42 new 

stimuli had the same structure across all conditions. Category prototypes themselves, which 

were not included in any training set, were included in both the recognition and categorization 

testing sets. In addition, there were 5 new test items at each distance from the category A 

prototype, excluding those equidistant. Stimuli with 6-9 prototypical A features were considered 

category A members, stimuli with 1-4 prototypical A features (thus 9-6 prototypical B features) 

were considered category B members. A different set of such stimuli was selected for 

recognition and generalization, randomly from all possible stimuli. Importantly, although 

category separability of training items differed across training sets, the category structure of 

generalization items was the same across all groups. 

 
Procedure 

Participants completed the three phases of the experiment in the following order: 

training, recognition, and categorization. Recognition always preceded categorization to 

minimize interference during recognition from new exemplars presented during the 

generalization phase. 

In each trial of the feedback-based training (Figure 1C), an individual exemplar was 

presented on the screen and participants were instructed to decide which of two families 
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(Romeo’s or Juliet’s) it belonged to. Participants were told that they would have to start by 

guessing, but that it was possible to learn to sort the items accurately over time. Each exemplar 

was presented for 2.5 seconds before the response options appeared on the screen. When the 

response options appeared, participants were asked to indicate their response with a keyboard 

press. Response timing was self-paced following the initial display period. Two seconds 

following the response, participants were told if their answer was correct or wrong, and to which 

family the stimulus belonged. Feedback appeared for 1.5 seconds. There were 8 blocks of 

training, with two repetitions of each exemplar in each block. Exemplars within a block were 

pseudorandomly ordered so that each was presented once in the first half and once in the 

second half of a block. For each half block, exemplars were pseudorandomly ordered so that no 

more than three exemplars from the same category were presented consecutively. This 

constraint served to reduce the likelihood that some subjects would by randomly 

assigned to have long blocks of items only from one category whereas other subjects 

would see the categories more intermixed, a factor that is known to affect category 

learning (Carvalho & Goldstone, 2014; Kang & Pashler, 2012).    

Recognition (Figure 1D) immediately followed training. Individual exemplars were 

presented and participants judged if that exact exemplar had been presented during training 

(old) or had not been presented previously in the experiment (new). Each exemplar was 

presented on the screen for 4 seconds followed by an 8 second fixation period. No feedback 

was given. Categorization (Figure 1E) immediately followed recognition. Individual exemplars 

were presented and participants indicated which family they belong to. Each exemplar was 

presented on the screen for 4 seconds followed by an 8 second fixation period. No feedback 

was given. There were two blocks of each task, and stimuli were pseudorandomly ordered so 

that so that there were an equal number of items from each category in each block and that old 
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items were distributed equally across the two blocks. In between individual training, recognition 

and categorization blocks, participants took self-paced breaks.   

 

Statistical analyses  

Of main interest in all phases was the effect of training set. Given the large number of 

conditions and to limit the number of statistical comparisons, we first evaluated the effect of 

training condition on behavior using an ANOVA with the training group as a between-subjects 

factor (6 levels). We followed up any significant effects of training group by computing a multiple 

regression analysis that included training set size and training set coherence as separate 

predictors to determine the degree to which the differences among groups were driven by each 

aspect of training.  Most ANOVAs also included a within-subject manipulation relevant for the 

given phase and analysis (e.g., training block, test item typicality) as a within-subject factor, with 

Greenhouse-Geisser corrections for violations of the sphericity assumption applied as needed 

(denoted with ‘GG’). We followed up any significant within-subject effects with t-tests to quantify 

the strength and direction of differences between conditions. Bonferroni correction for multiple 

comparisons was applied when multiple independent statistical tests were computed, such as 

when conducting a separate t-test for each group or following an omnibus ANOVA with multiple 

pair-wise comparisons. The dependent variables and within-subject factors of interest for each 

task phase are described as follows. 

Training accuracy. Training accuracy was computed as the proportion of correct 

classifications for each block of training. Accuracy during the final block of training was 

compared to chance (proportion correct = 0.5 for two categories) to evaluate whether each 

training group acquired category knowledge by the end of training. To evaluate whether learning 

occurred during training and whether training set modulated acquisition of category knowledge, 

we computed a 6 (training group) x 8 (training block) mixed-factor ANOVA. 
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Categorization accuracy. Overall accuracy was computed as the proportion of correct 

classifications. To determine if each group showed above-chance generalization, one-sample t-

tests were computed for each group comparing accuracy for new items to theoretical chance 

(proportion correct = 0.5 for two categories). To test for an overall effect of training group on 

subsequent generalization to new items at varying levels of typicality, we computed a 6 (training 

group) x 5 (test item typicality: 6-10 prototypical features) mixed-factors ANOVA with 

classification accuracy only for new items as the dependent measure. To test whether training 

group affected subsequent categorization of old (training) items, we also computed a one-way 

ANOVA comparing categorization accuracy across groups. 

Recognition accuracy. Recognition accuracy was computed as the corrected hit rate 

[i.e., probability (‘old’ | old item) – probability (‘old’ | new item)]. This measure ensures that 

participants cannot reach low or high recognition scores simply due to a bias in responding “old” 

frequently or infrequently, making it a suitable measure for our situation of unbalanced number 

of old and new items in the test set. To determine if each group showed above-chance 

recognition performance, one-sample t-tests were computed in each training group comparing 

to chance = 0 (i.e., no differentiation between old and new items). To test whether training group 

affected subsequent recognition, we computed a one-way ANOVA comparing the six training 

groups in terms of their corrected hit rates. We were also interested in whether subjects were 

more likely to falsely recognize items closer to the prototypes and whether that effect was 

moderated by training group. We computed a 6 (training group) x 5 (test stimulus typicality: 6-10 

prototypical features) mixed-factors ANOVA on the proportion of new items falsely endorsed as 

‘old.’  

Relationship between recognition and categorization. To test for a relationship 

between memory for individual items and the ability to generalize category labels, we computed 

a multiple regression that included the hit and false alarm rates from recognition as predictors of 

categorization accuracy for new items. We were primarily interested in whether the false alarm 
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rate was related to category generalization, given theoretical views postulating that false 

memories and generalization are flip sides of the same coin (Marsh, Cantor, & Brashier, 2015; 

Roediger et al., 1995; Varga, Gaugler, & Talarico, 2019). However, high false memory rates 

could be also driven by bias to respond “old”. We thus included both hit rate and false alarm rate 

in the regression, to ensure that any relationship was specific to the false alarm rate and not 

only the tendency to respond ‘old.’ We also included training set coherence and size as 

predictors to account for mean differences between groups. 

Prototype and exemplar model fitting. Prototype and exemplar models were fit to trial-

by-trial data in individual subjects separately for the recognition and categorization tests. We 

chose to fit separate parameters for each phase rather than jointly fitting categorization and 

recognition because we were interested in whether individuals might flexibly use different types 

of information when making different types of memory judgments. Further, there is evidence that 

items within a category can become less distinguishable from one another following learning 

(Goldstone, Lippa, & Shiffrin, 2001). We reasoned that the features that participants paid most 

attention to during categorization might be particular drivers of this effect and therefore not good 

candidates for recognition decisions that require subtle discrimination of previously encountered 

category members vs. not previously encountered category members. We thus allowed the 

models to return different attention and sensitivity parameters across phases. However, we also 

tested two alternative parameter fitting approaches for the attention weights: (1) using 

categorization-derived attention weights in fitting recognition data, and (2) fitting recognition and 

categorization responses of a given participant jointly. The sensitivity parameter was always 

allowed to vary between the categorization and recognition phases. All conclusions remain 

unchanged when using these alternative procedures. 

The conceptual representations of the models are depicted in Figure 1A. Prototype 

models assume that categories are represented by their prototypes (i.e., the combination of 

typical category features from all training items in each category). Consistent with prior modeling 
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literature (Maddox et al., 2011; Minda & Smith, 2001), similarity of each test stimulus to each 

prototype was computed, assuming that perceptual similarity is an exponential decay function of 

physical similarity. Assuming a non-linear mapping between physical and perceptual similarity is 

supported by prior findings (Shepard, 1957), and allows the prototype and exemplar models to 

make different predictions (otherwise the distance to the prototype is the same as the average 

distance to individual stimuli). In addition, we took into account potential differences in attention 

to individual features. Formally: 

 
(1)    𝑆! 𝑥 =  exp −𝑐 (𝑤! 𝑥! − 𝑝𝑟𝑜𝑡𝑜!" !)!/!!

!!!   

 
where SA(x) is the similarity of item x to category A, xi represents the value of the item x on the i-

th dimension of its m binary dimensions (m=10 in our study), protoA is the prototype of category 

A, r is the distance metric (fixed at 1 for city-block metric for the binary-dimension stimuli), w is a 

vector with weights for each of the 10 stimulus features with weight values estimated from the 

data (fixed to sum to 1), and c is sensitivity (rate at which similarity declines with distance), also 

estimated from the data and constrained to be between 0-700.  

Exemplar models assume that categories are represented by their exemplars, and that 

summed similarity across category exemplars drives exemplar-based decision-making. Formally 

(Nosofsky, 1987; Zaki, Nosofsky, Stanton, & Cohen, 2003), similarity of an item x to category A 

is computed as: 

 
(2)    𝑆! 𝑥 =  exp −𝑐 (𝑤! 𝑥! − 𝑦! !)!/!!

!!!!∈!  

 
where y represents the individual training stimuli from category A, and the remaining notation 

and parameters as in Equation 1.  

For categorization, for both models, the probability of assigning a stimulus x to category 

A is equal to the similarity to category A divided by the summed similarity to categories A and B, 

formally: 
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(3)    𝑃(𝐴|𝑥) =  !!(!)

!! !  ! !! !  

 
For recognition, for each model, similarity values were used to predict whether a 

participant will label an individual item as old or new by summing across the similarity across 

both categories (SA(x) + SB(x)) to determine an overall familiarity of item x (Nosofsky, 1988). 

The familiarity for each item is then compared to a threshold (k) that is estimated from the data. 

The probability of labeling stimulus x as old is equal to its summed similarity to both categories 

divided by the summed similarity plus the threshold, k (Nosofsky & Zaki, 1998), formally: 

 
(4)    𝑃(𝑂𝑙𝑑|𝑥) =  !! !  ! !! !

!! !  ! !! ! !! 

 
 

We note that for both categorization and recognition, we also fit a version of the exemplar model 

that includes an additional parameter, γ, which allows for more or less deterministic responding 

based on subjective similarity. Including this parameter did not affect the pattern of results.  

 For each trial, for each test (recognition, categorization) the probability of the 

participant’s response under the assumptions of each model was computed. An error metric 

(negative log-likelihood of the whole sequence of responses) was then computed for each 

model by summing the negative of log-transformed probabilities. This summed value was 

minimized by adjusting the threshold (for recognition only) and attention weights and sensitivity 

parameters (for both categorization and recognition) using standard maximum likelihood 

methods with the “fminsearch” function in MATLAB (Mathworks, Natick, MA). Parameters were 

optimized separately for each test (recognition/categorization), for each model 

(prototype/exemplar), and for each participant.  

Determining participants’ strategies. To label participants as exemplar-users or 

prototype-users, we tested whether the models fit reliably better than a random model and 

whether one model fit reliably better than the other using Monte Carlo simulations. We found a 
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Monte Carlo approach more suitable than other metrics, such as AIC or BIC, for two reasons. 

First, we needed to determine whether either model fit better than chance. Penalization for free 

parameters (such as the attention weights) would be quite severe if using AIC/BIC approaches, 

given the 10-dimensional stimuli used here. Many participants with above chance accuracy 

would end up being classified as best fit by a random response model, indicating that such 

criteria are overly conservative. The second consideration is the choice between the prototype 

and the exemplar model (when they outperform chance). When two models have the same 

number of parameters (as the model versions used here), the model with better fit is traditionally 

considered the winner, no matter how small the difference. But small differences in the fit values 

may not be meaningful and the assumption that equal model fits can be equated with a fit 

difference of exactly zero may not be valid. For example, Monte Carlo simulations with randomly 

shuffled data (that both models should fit comparably poorly) showed that the exemplar model 

provided on average a slightly better fit to randomly shuffled categorization responses than the 

prototype model (mean exemplar advantage across subjects, M = 0.05, one-sample t(162) = 

4.82, p < 0.001) whereas randomly shuffled recognition response were on average better fit by 

the prototype model (M = 0.13, one-sample t(162) = 3.50, p < 0.001). Thus, despite the 

comparable number of free parameters, one model may be slightly more flexible when fit to a 

specific set of stimuli, and the Monte Carlo approach is better equipped to account for such a 

bias than a simple fit comparison. However, to ensure that the results were robust with respect 

to the model selection procedure, we verified that all conclusions remained unchanged if we 

used AIC instead. 

To generate the Monte Carlo null distribution, for each participant for each test, we 

randomly shuffled the stimuli associated with their series of responses. We chose to shuffle the 

stimuli in order to maintain the participant’s overall response bias and any temporal dependency 

between responses from one trial to the next. This procedure was repeated 1,000 times to 

generate a subject-specific null distribution of model fits for each model and for each test. We 
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then compared the observed prototype and exemplar model fits to this null distribution to 

determine whether one or both models fit the participant’s data better than chance. This was 

determined by comparing the actually observed model fit to the null distribution of fits and 

testing whether the observed model fit appeared by chance with a frequency less than 5% (p < 

0.05; one-tailed).  

To determine whether one model fit reliably better than the other, we compared the 

observed difference in model fits to the null distribution of differences in model fits generated by 

the Monte Carlo simulation. One model was deemed a better fit than the other for a given test 

for a given participant when that difference score appeared by chance with a frequency less 

than 25% (75% probability that the model fit differences did not arise by chance, two-tailed test). 

Using this method, participants were labeled as prototype-users, exemplar-users, or having 

comparable fit for both strategies (“similar”).  We chose this alpha level for labeling participants’ 

strategies as a compromise between a strict alpha level of 5%, which labeled many subjects as 

showing similar fits between the two models, and a no-alpha model selection approach, such as 

when AIC is used to select the winning model based on lower fit error value without addressing 

whether the fit value difference is reliably above chance. However, to ensure that our results 

were robust to the alpha level chosen, we verified that all conclusions remained the same with 

any of these thresholds (AIC metric without assessing difference reliability, Monte Carlo alpha = 

5%, Monte Carlo alpha = 25%).  

Within each phase (categorization, recognition), we tested whether each aspect of the 

training sets (coherence, size) affected the proportion of participants best fit by each model 

using a logistic regression. We also compared whether model fits differed across categorization 

and recognition, using McNemar’s test for paired nominal data. 

 
Results 

Training accuracy  
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See Figure 2 for training accuracy in each block separated by training group.  

We first tested whether accuracy in the final block of training was above chance (proportion 

correct = 0.5 for two categories) for each training group by computing separate one-sample t-

tests using a Bonferroni corrected alpha-level of p < 0.0083 to account for the six separate 

tests. All groups were able to classify at above-chance levels by the end of training (see Table 2 

for exact means and t-statistics).  

 
 

Figure 2. Training accuracy. Mean accuracy from each block of the training separated by 
training group. In the legend, the number of items corresponds to the set size manipulation and 
the percentages indicate the average percentage of typical features in the training set, 
corresponding to the set coherence manipulation. Error bars depict the standard error of the 
mean.  
 
Table 2 
 
Accuracy in final training block separated by training set. T-statistics indicate comparison to 
chance performance. 
Training Set Mean SD t-statistic p-value 
5 items: 60% typical 0.58 0.10 3.37 0.002 
6 items: 67% typical  0.61 0.12 4.79 <0.001 
10 items: 70% typical 0.68 0.16 5.61 <0.001 
7 items: 72% typical  0.72 0.11 9.94 <0.001 
8 items: 75% typical  0.78 0.14 14.01 <0.001 
5 items: 80% typical 0.85 0.15 11.46 <0.001 
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We tested whether training accuracy differed by training group and across training 

blocks by computing a training group x training block mixed-factors ANOVA. There was a 

significant main effect of group [F(5,157) = 30.47, p < 0.001, 𝜂!! = 0.49], indicating that overall 

training scores differed among groups. There was a significant main effect of training block 

[F(5.42,850.89) = 34.86, p < 0.001, 𝜂!! = 0.18, GG], indicating learning across time. The group x 

training block interaction was not significant [F(27.10, 850.89) = 0.73, p = 0.88, 𝜂!! = 0.02, GG], 

indicating comparable improvement across blocks in all groups (Figure 2). To follow up on the 

main effect of group and test to what degree training set size and coherence drive group 

differences, we computed a multiple regression with training set size and coherence as 

predictors and accuracy in the final training block as the outcome. Training set coherence was a 

significant positive predictor of final training accuracy [ß = 0.57, t(160) = 8.65, p < 0.001], but the 

set size predictor was not significant [ß = -0.02, t(160) = -0.31, p = 0.76]. Thus, training on more 

typical sets led to better learning with no evidence that set size affected learning rates. 

Categorization accuracy  

Categorization accuracy for each group and for each level of test item typicality is 

presented in Figure 3. To test whether individuals in each group were able to generalize 

category knowledge at above-chance levels, we first submitted accuracy on all new items from 

each training group to one-sample t-tests comparing to theoretical chance (proportion correct = 

0.5 for two categories) using a Bonferroni corrected alpha-level of p < 0.0083 to account for the 

six separate tests. Only the group trained with the least coherent set (5 items: 60% typical) did 

not generalize at significantly above-chance levels [t(21) = 1.47, p = 0.16, d = 0.31; all other t’s 

> 6, p’s < 0.001]. In fact, those trained on the least typical items did not even show above-

chance classification of the items they were trained on [t(21) = 0.45, p = 0.66, d = 0.10]. This 

chance-level performance occurred despite this group being significantly above chance by the 

end of training. 
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We next tested whether generalization accuracy differed across training groups. Test 

item typicality and the group x test item typicality interaction were also included to determine 

whether generalization to atypical items was especially low or especially high in any group. The 

6 (training group) x 5 (test item typicality: 6-10 prototypical features) mixed factors ANOVA 

revealed a significant main effect of training group [F(5,157) = 10.03, p < 0.001, 𝜂!! = 0.24], a 

significant main effect of test item typicality [F(3.17,498.21) = 62.26, p < 0.001, 𝜂!! = 0.28, GG], 

and a significant training group x test item typicality interaction effect [F(15.86,498.21) = 2.41, p 

= 0.002, 𝜂!! = 0.07, GG]. As apparent on Figure 3, the significant effect of test typicality was 

driven by a significant linear trend [F(1,157) = 150.16, p < 0.001, 𝜂!! = 0.49], with accuracy 

increasing from the least typical to the most typical test items.  

To follow-up on the significant test typicality by group interaction, we conducted one-way 

repeated-measured ANOVAs within each training group using a Bonferroni corrected alpha-

level of p < 0.0083 to account for the six separate tests. The training group x test item typicality 

interaction was driven by all groups showing a significant linear effect of test item typicality [all 

F’s > 22, p’s < 0.001, 𝜂!!’s > 0.28] except the 5 items: 60% typical group that did not show an 

effect of test item typicality [F(1,21) = 0.311, p = 0.58, 𝜂!! = 0.02].  

Given that the 5 items: 60% typical group performed at chance, we recomputed the 

mixed effects ANOVA with group and test typicality as factor after excluding this group. This 

allowed us to evaluate whether overall accuracy and the magnitude of the test item typicality 

effects differed among groups that did perform above chance. We found an even more 

pronounced main effect of test typicality [F(3.25, 442.15) = 76.97, p < 0.001, 𝜂!! = 0.36, GG] that 

was well described as a linear trend [F(1,136) = 192.61, p < 0.001, 𝜂!! = 0.59]. There was also a 

main effect of group [F(4,136) = 2.78, p = 0.03, 𝜂!! = 0.08]. However, there was no group x test 

item typicality interaction [F(13.00,442.15) = 0.85, p = 0.61, 𝜂!! = 0.02], indicating a comparable 

effect of test item typicality among all groups that performed above chance. 
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To follow up on the main effect of training group, we computed a multiple regression 

model including training set size and training set coherence as predictors of overall 

generalization accuracy. Training set coherence was a significant positive predictor of 

generalization accuracy [ß = 0.44, t(160) = 6.17, p < 0.001], but training set size did not 

significantly predict generalization [ß = 0.11, t(160) = 1.50, p = 0.14]. Thus, training on typical 

sets led to better categorization of new items with little effect of training set size. We were 

interested in whether the effect of training set coherence was consistent across all levels of test 

item typicality or if more coherent training sets only showed an advantage for test items closest 

to the prototypes. We repeated the above multiple regression using accuracy for each test item 

typicality as the dependent variable using a Bonferroni corrected alpha-level of p < 0.01 to 

account for the five separate tests. Training set coherence positively predicted accuracy at 

every level of test item typicality (all ß’s > .25, t’s > 3, p’s < 0.002) with the exception of 70% 

typical items where it did not reach significance [ß = 0.14, t(160) = 1.79, p = 0.075]. The training 

set size predictor never reached significance (all |ß’s| < .12, t’s < 1.6, p’s > .11). Thus, training 

on typical items was beneficial not only for generalization to other typical items, but also for 

generalization to atypical items near the category boundary.   

To test whether training group also affected classification accuracy of old (training) items 

in the categorization test, we computed a one-way ANOVA comparing training groups. There 

was a significant effect of training group [F(5,157) = 13.41, p < 0.001, 𝜂!! = 0.30] indicating that 

classification of training (old) examples differed among groups. A follow-up multiple regression 

that included set size and set coherence as predictors of classification of old items showed 

again set coherence as a significant positive predictor [ß = 0.54, t(160) = 8.08, p < 0.001], with 

no effect of set size [ß = 0.03, t(160) = 0.49, p = 0.62]. 
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Figure 3. Categorization accuracy for each item type separated by training set. Training sets are 
organized with increasing coherence from left to right, with specific coherence levels indicated 
by the percentages on the x-axis. Training set size is indicated on the x-axis by the number of 
items per category. Accuracies on training (old) items re-presented during the categorization 
test are depicted with striped bars. Accuracies for new items (common across all groups) 
varying in their similarity to category prototypes are depicted with solid bars. Accuracies for 
prototypes are depicted in the darkest bars with increasingly lighter bars for new items sharing 
fewer features with the prototypes. Error bars depict standard error of the mean. 
 
Recognition accuracy  

Corrected hit rate. Figure 4A depicts corrected hit rates separated by training group. To 

test whether individuals in each training group were able to discriminate between old and new 

category examples in a recognition task, we first submitted corrected hit rates [probability (‘old’ | 

old item) – probability (‘old’ | new item)] to one-sample t-tests comparing to theoretical chance = 

0 using a Bonferroni corrected alpha-level of p < 0.0083 to account for the six separate tests. 

Two groups showed above-chance recognition performance: the 5 items: 60% and 6 items: 

67% groups (t’s > 3.7, p’s < 0.002). The 8 items: 75% group showed recognition performance 

that was above-chance but did not survive correction for multiple comparisons [t(44) =2.38, p = 

0.02]. Recognition performance in the other three groups did not differ reliably from chance (all 

t’s < 2, all p’s > 0.08). Although some groups showed significantly above-chance recognition 

and others did not, overall recognition rates did not differ significantly across training groups 

(one-way ANOVA F(5,157) = 1.40, p = 0.23, 𝜂!! = 0.04).  
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Endorsement rates. We were also interested in whether individuals were more likely to 

falsely recognize new items that were similar to category prototypes and whether that effect 

differed across training groups (Figure 4B). We computed a 6 (training group) x 5 (test item 

typicality) mixed factors ANOVA. The main effect of training group was not significant [F(5,157) 

= 0.53, p = 0.75, 𝜂!! = 0.02] nor was the training group x test item typicality interaction 

[F(14.90,467.83) = 1.08, p = 0.38, 𝜂!! = 0.03, GG]. There was a significant main effect of test 

item typicality [F(2.98,467.83) = 12.03, p < 0.001, 𝜂!! = 0.07, GG], that was well described as a 

linear increase in false recognition for new items with increasing number of shared features with 

category prototypes [F(1,157) = 28.24, p < 0.001, 𝜂!! = 0.15].  

 
Figure 4. Recognition task. A. Overall recognition performance measured by corrected hit rates 
(hits – false alarms) B. Proportion of ‘old’ responses during recognition for items varying in their 
presentation history (old/training items v. all others/new items) and similarity to prototypes (60%-
100% typical). Hit rates for training (old) items re-presented during the recognition test are 
depicted with striped bars. False alarm rates for new items varying in their similarity to category 
prototypes are depicted with solid bars. False alarm rates for prototypes are depicted in the 
darkest bars with increasingly lighter bars for new items sharing fewer features with the 
prototypes. Both graphs separate results by training group: coherence levels are indicated by 
the percentages on the x-axis, and training set size is indicated on the x-axis by the number of 
items per category. Error bars depict standard error of the mean. 
 
Relationship between recognition and category generalization  
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To test for a relationship between recognition and category generalization, we computed 

a multiple regression that included the hit and false alarm rates from recognition as predictors of 

generalization accuracy (categorization accuracy for new items). We also included training set 

coherence and set size as predictors to account for mean differences across groups. Results 

revealed a marginal relationship between the false alarm rate and generalization [ß = 0.17, 

t(158) = 1.89, p = 0.06] but not the hit rate [ß = 0.05, t(158) = 0.54, p = 0.59]. However, reliability 

of the hit rate measure was somewhat low (split-half Pearson’s r with Spearman-Brown 

correction = 0.43), and thus the lack of hit rate effect may be due to poor measure reliability. 

The reliability of false alarm rates was within an acceptable range (split-half Pearson’s r with 

Spearman-Brown correction = 0.67) and reliability of the generalization accuracy measure was 

good (split-half Pearson’s r with Spearman-Brown correction = 0.84). After accounting for 

recognition performance, the relationship between training set coherence and generalization 

accuracy remained significant [ß = 0.43, t(158) = 6.14, p > 0.001], and the effect of training set 

size remained non-significant [ß = 0.10, t(158) = 1.40, p = 0.16]. When we included interaction 

effects between the false alarm rate and each training set manipulation, neither reached 

significance [coherence ß = -0.36, t(156) = -0.36, p = 0.71; size ß = 0.43, t(156) = 0.98, p = 

0.33].  

 
Prototype and exemplar model fits  

Categorization data model fits. Figure 5 depicts raw model fits with the relative 

prototype vs. exemplar fit for each individual subject. Across the whole set, 57% (93 subjects) 

were better fit by the prototype model than the exemplar model, 23% (37 subjects) were best fit 

by the exemplar model, 3% (5 subjects) were similarly fit by both models, and 17% (28 subjects) 

had fits that did not differ from chance. Figure 6a depicts the proportion of subjects who were 

best fit by the prototype model, the exemplar model, those whose model fits did not differ 

significantly between the prototype and exemplar models (“similar”), and those with fits not 
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above chance (“chance”) separated by training group. Table 3 presents raw fit values for 

prototype and exemplar models with subjects grouped by their best fitting model. Prototype and 

exemplar model fits were correlated with generalization accuracy to a similar degree (prototype 

r = -.83, p < .001, exemplar r = -.84, p < .001), with better accuracy associated with lower model 

error. 

  

Figure 5. Raw model fit error for categorization data. Relative exemplar (x-axis) and prototype 
(y-axis) model fits for each subject in terms of negative log likelihood. Trend line represents 
equal exemplar and prototype model fit. Dots below the trend line represent subjects with 
smaller model error for the prototype model compared to the exemplar model. Dots above the 
trend line represent subjects with smaller model error for the exemplar model relative to the 
prototype model. 
 

To test whether each aspect of the training sets (set size, coherence) affected 

subsequent model fits, we used a logistic regression with training set size and coherence as 

predictors and the model fit status (best fit by the prototype model or not) as the outcome. 

Training set coherence was a significant predictor (ß = 0.99, SE = 0.29, p = 0.001) of prototype 

fit status, with greater training set coherence being associated with greater probability of 

adopting a prototype strategy. Set size did not predict prototype fit status (ß = 0.001, SE = 0.10, 
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p = 0.99). The pattern of results was similar when we used an AIC metric to label participants as 

prototype users, exemplar users, and those not different from chance: set coherence, but not 

set size, predicted the proportion of prototype users in categorization. 

 

Figure 6. Model fits. A. Models fit to categorization data and B. recognition data. The percent of 
subjects better fit by the prototype than exemplar model is depicted in blue, the percent better fit 
by the exemplar than prototype model in red, the percent who were comparably fit by both 
models (‘similar’) in purple, and those whose fits did not differ from chance in grey. Both graphs 
separate results by training group: coherence levels are indicated by the percentages on the x-
axis, and training set size is indicated on the x-axis by the number of items per category. The 
dashed lines depict the percent of subjects best fit by the prototype model across the entire 
group for each respective test.  

 

Recognition data model fits. Across the whole set, 9% (15 subjects) were better fit by 

the prototype model than the exemplar model, 7% (12 subjects) were best fit by the exemplar 

model, 4% (6 subjects) were similarly fit by both models, and 80% (130 subjects) had fits that 

did not differ from chance. The proportion of those classified as using a prototype strategy was 

reliably smaller during recognition than categorization (McNemar test for paired nominal data, X2 

(1) = 0.73, p < 0.001), reflecting lower utility of the prototype strategy for the recognition than 



Training set effects on concept generalization 29 

categorization test. Figure 6b depicts the proportion of subject from each training group that 

were best fit by the prototype model, the exemplar model, similarly by both models, and those 

not differing from chance. A logistic regression showed that neither training set size nor training 

set coherence was reliably predictive of the proportion of prototype users in the recognition 

phase (p’s > 0.4). The pattern of results was similar when we used an AIC metric to label 

participants: training set did not affect the proportion of prototype users in recognition and the 

overall proportion of prototype users was smaller during recognition than during categorization. 

	

Table 3   

Mean fit values for prototype and exemplar models with subjects grouped by their 
best fitting model. Standard deviation is listed in parentheses. Lower numbers 
mean better fit.  
 Categorization Recognition 

 Prototype 
model 

Exemplar 
model 

Prototype 
model 

Exemplar 
model 

Prototype-users 13.61 (8.24) 17.48 (7.16) 23.33 (5.39) 28.24 (5.05) 
Exemplar-users 20.05 (11.20) 17.10 (11.58) 23.70 (9.06) 18.12 (8.68) 
Similar fits 29.93 (4.86) 29.55 (4.97) 24.72 (5.24) 24.31 (6.14) 
Chance 35.18 (2.72) 34.88 (2.96) 28.39 (6.03) 28.02 (6.04) 

 

Model parameters. We were also interested in whether the parameters estimated from 

the prototype and exemplar models were similar across test phases or if instead there was 

evidence that participants used different information to make these two judgments. Table 4 

presents mean parameter values for each model separately for categorization and recognition. 

We computed within-subject correlations of the attention weights estimated for each phase 

separately. We then Fisher-transformed the correlation coefficients and averaged them across 

participants. We did not find a significant relationship between phases in either model (mean 

exemplar Fischer’s z = 0.05, one-sample t(162) = 1.74, p = 0.08; prototype Fisher’s z = 0.03, 

one-sample t(162) = 1.01, p = 0.32). Additionally, we tested whether sensitivity parameters 
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estimated in the two phases (one parameter per participant per phase) were related using an 

across-subjects correlation. We found no relationship between sensitivity estimates across 

phases for either the exemplar (r = -0.02, p = 0.73) or prototype model (r = -0.06, p = 0.43). This 

lack of a correlation between phases is in contrast to the similarity in the attention weight 

estimates for exemplar and prototype models within a phase (mean categorization Fisher’s z = 

1.59, one-sample t(162) = 19.20, p < 0.001; recognition Fisher’s z = 0.38, one-sample t(162) = 

9.40, p < 0.001), indicating that both models tended to identify the same features being 

attended to for a given phase and participant. Similarly, there was a reliable across-subject 

correlation between sensitivity parameters estimated from each model within each phase. The 

magnitude of this effect was large during categorization and small to medium during recognition 

(categorization r = 0.47, p < 0.001; recognition r = 0.17, p < 0.03). Thus, the lack of a correlation 

across phases was not simply due to poor reliability in estimating the parameters. Instead, there 

seem to be genuine differences between the phases that both models converge on. 

  The sensitivity parameter indexes how physical similarity to a given category 

representation relates to subjective similarity and thus response probabilities. Values closer to 

zero correspond to more uniform subjective similarity across levels of physical similarity and 

thus more flat relationship between physical similarity and response probabilities. Higher values 

mean a steeper similarity gradient and thus a stronger effect of physical similarity on responses. 

As such, we were interested in whether there were differences in model-estimated sensitivity 

across phases (categorization vs. recognition). We hypothesized greater exemplar model-

estimated sensitivity during recognition than categorization and greater prototype model-

estimated sensitivity during categorization than recognition. To test this idea, we computed a 2 

(model: prototype, exemplar) x 2 (phase: categorization, recognition) repeated-measures 

ANOVA on estimates of the sensitivity (c) parameter. There was a significant main effect of 

model [F(1,162) = 114.03, p < 0.001, η!! = 0.41] with higher overall sensitivity values for the 

exemplar compared to the prototype model (see Table 4). The main effect of phase was not 
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significant [F(1,162) = 0.02, p = .88, η!! < 0.001], but the model x phase interaction was 

significant [F(1,162) = 10.29, p = 0.002, η!! = 0.06]. To determine the locus of the interaction, we 

compared the estimates from categorization and recognition using paired t-tests, one for the 

prototype model and one for the exemplar model. The interaction was driven by numerically 

higher prototype-related sensitivity estimates for categorization than recognition [t(162) = 2.19, p 

= 0.03] and numerically higher exemplar-related sensitivity estimates for recognition than 

categorization [t(162) = 1.57, p = 0.12], although neither pair-wise comparison reached a 

corrected threshold (p < 0.025). These findings provide some evidence that participants’ 

recognition judgments were less sensitive to physical similarity to prototypes compared to their 

categorization judgments, and vice-versa. There were no significant moderating effects of 

training version when we included it as a between-subjects factor (all F’s < 1.7, p’s > 0.15). 

 
Table 4 
Mean parameter estimates separated by model (prototype, exemplar) and phase (categorization, recognition) 
 Attention weights by dimension   
 1 2 3 4 5 6 7 8 9 10 C K  

Categorization: 
Prototype 

0.13 
(0.20) 

0.09 
(0.15) 

0.10 
(0.18) 

0.11 
(0.18) 

0.08 
(0.14) 

0.12 
(0.17) 

0.08 
(0.13) 

0.05 
(0.10) 

0.09 
(0.17) 

0.16 
(0.20) 

23.42 
(57.11) 

-- 

Categorization: 
Exemplar 

0.14 
(.26) 

0.10 
(0.20) 

0.10 
(0.23) 

0.12 
(0.24) 

0.07 
(0.18) 

0.11 
(0.23) 

0.08 
(0.19) 

0.04 
(0.11) 

0.09 
(0.21) 

0.15 
(0.25) 

47.52 
(90.66) 

-- 

Recognition: 
Prototype 

0.11 
(0.20) 

0.09 
(0.19) 

0.11 
(0.20) 

0.11 
(0.19) 

0.08 
(0.14) 

0.11 
(0.19) 

0.12 
(0.21) 

0.10 
(0.20) 

0.09 
(0.18) 

0.09 
(0.17) 

13.40 
(8.52) 

0.21 
(0.22) 

Recognition: 
Exemplar 

0.12 
(0.17) 

0.09 
(0.16) 

0.11 
(0.17) 

0.11 
(0.16) 

0.08 
(0.15) 

0.16 
(0.10) 

0.11 
(0.17) 

0.11 
(0.17) 

0.08 
(0.14) 

0.08 
(0.16) 

59.11 
(23.65) 

0.59 
(0.65) 

 
 

 
 
 

Discussion 

 In the present study, we tested how training on category structures that varied in their 

coherence and number of exemplars affected category learning, subsequent generalization, and 

category representations. As a secondary question, we were also interested in how category 

generalization related to memory for individual items and whether individuals flexibly used 

different representations to make categorization vs. recognition judgments. Subjects learned to 

classify novel cartoon stimuli into two categories, with the size and coherence of training sets 
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differing across subjects. Afterward, subjects were tested on their ability to recognize individual 

exemplars presented during study and their ability to generalize the category labels to new 

examples. We compared groups in terms of accuracy and the fit of formal prototype and 

exemplar models. Results showed faster learning and better subsequent generalization from 

more coherent training sets. This advantage for more coherent training sets was apparent even 

for the least typical new items at test. Training on more coherent sets also led to greater 

reliance on prototype representations when making categorization judgments. These results 

suggest that learning from a coherent set of examples facilitates extraction of category 

prototypes, promoting category knowledge that generalizes even to items at category 

boundaries. Contrary to our predictions, there was little effect of training set size on accuracy 

during either the training phase or categorization test and no evidence that set size affected the 

reliance on prototype vs. exemplar representations. Training condition did not reliably affect the 

ability to recognize individual category members. Instead, we found a marginal trade-off 

between recognition and generalization across individuals and an overall reduction in the 

proportion of participants fit by either model in recognition compared to categorization. 

Together, these results suggest that forming abstract category representations facilitates later 

category generalization but may constrain individuals’ abilities to make other types of memory 

judgments.  

 Early studies of category learning provided conflicting results regarding whether learning 

from coherent or more variable examples better promotes generalization (Hintzman, 1984; 

Homa & Vosburgh, 1976; Peterson et al., 1973; Posner & Keele, 1968). The present study 

included a wide range of training set coherence levels and showed a clear effect on category 

learning and the ability to later generalize: better performance resulted from training on sets with 

higher coherence. Thus, prior advantages for high variability training sets likely resulted from 

training subjects to a performance criterion, which was necessarily more extensive in these 

difficult-to-learn category structures. When we equated the number of repetitions of each 
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training item across sets varying in coherence, there was a clear advantage for training on more 

coherent sets, as expected from prior computational modeling of categorization (Hintzman, 

1984, 1986). Critically, the advantage for more coherent training sets was not limited to 

generalization items closest to the prototype: training set coherence positively predicted 

classification even for generalization items sharing the fewest features with the prototypes. This 

finding is particularly novel because previous studies have suggested that training on less 

coherent stimuli may be especially beneficial for fostering a breadth of category knowledge 

(Dukes & Bevan, 1967; Perry, Samuelson, Malloy, & Schiffer, 2010; Peterson et al., 1973). 

However, it is consistent with prior work showing that it is sometimes easier to generalize a 

category after learning from easy discriminations compared to more difficult ones, even if the 

more difficult training better resembles the types of discriminations made during test (Edmunds, 

Wills, & Milton, 2019), and that repeated exposures to the same examples provides stability that 

facilitates broad knowledge (Carvalho, Chen, & Chen, 2019; Horst, Parsons, & Bryan, 2011). 

These findings (with matched variability across the two contrasting categories) also complement 

studies on category generalization under conditions where one of the contrasting categories has 

higher variability than the other (Cohen, Nosofsky, & Zaki, 2001; Rips, 1989; Stewart & Chater, 

2002). In such a case, subjects are biased toward classifying items equidistant from the two 

categories into the more variable category. One possibility, consistent with our results, is that 

subjects in unequal variability tasks may have a poorer conception of what defines the more 

variable category compared to the more coherent category. Thus, subjects may treat this 

contrasting category task perhaps as a single category (A/non-A) task and assume that any 

questionable items must not belong to the coherent category (Rips, 1989).  

We also found that training set coherence led to differences in the category 

representations underlying categorization judgments, as indexed by the relative fit of prototype 

versus exemplar models. Supporting our prediction, training on more coherent sets was 

associated with greater use of prototype representations during generalization. This finding is 
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consistent with the idea that training on a coherent set of examples facilitates linking of common 

features across items within a category, promoting the formation of abstract memory 

representations. Prior work has shown that training individuals on which feature values are most 

typical of a given category prior to showing any specific category examples (e.g., most category 

A members are red, most category B members are blue) leads to a greater reliance on 

prototype representations compared to when individual examples are presented first (Medin et 

al., 1984). Our work complements this previous finding, showing that prototypical feature values 

can be made salient not only via explicit training on individual features, but also by increasing 

the coherence of training examples around the prototype.  

Unlike set coherence, training set size did not reliably affect either category learning or 

generalization, suggesting that differences in set coherence were the primary driver of 

differences in learning and generalization of novel concepts. While some research has 

suggested that larger category sets are associated with better generalization (Goldman & 

Homa, 1977; Homa, Cross, Cornell, Goldman, & Shwartz, 1973; Homa et al., 1981), we found 

that differences in generalization were well accounted for by set coherence and that set size did 

not explain additional variability in generalization performance. While we predicted that 

increasing the number of examples would constrain individuals to the cognitive economy that 

prototype representations afford, we did not find evidence that set size affected subjects’ 

tendency to make categorization judgments based on prototype representations. This finding 

stands in contrast to previous work that compared across two levels of category set size (5 

versus 15 examples) and found an overall prototype model advantage that was numerically 

stronger for larger set sizes (Minda & Smith, 2001). Here, comparing groups across a larger 

number of set sizes (5, 6, 7, 8 or 10 examples), we found that set size did not reliably predict 

prototype use. One possibility is that prototype use does not increase linearly with set size but 

rather there is a step-wise increase at a set size value larger than that included in the present 

study. Future studies with set sizes larger than 10 items per category can test this possibility. 
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Alternatively, the effect of set size may differ across levels of set coherence. Because set size 

and set coherence were somewhat correlated in the present study, we were not able to test for 

interactions between these factors. Thus, further research is needed to better understand the 

circumstances in which training set size affects representations underlying categorization 

judgments.  

By showing that the structure of training examples can affect the types of 

representations that individuals form or access, our behavioral findings help resolve some past 

contradictions regarding the nature of concept representations (Minda & Smith, 2002; Nosofsky, 

1988). Among recent examples, Mack and colleagues (2013) used neuroimaging evidence to 

adjudicate between a prototype and an exemplar account of concept representation and found 

predominantly exemplar neural evidence. Training stimuli in that study were not coherently 

clustered around prototypes, which likely led to strong exemplar dominance in brain and 

behavior.  In contrast, Bowman and Zeithamova (2018) used training exemplars that were more 

category-typical and found predominantly prototype correlates in brain and behavior. The 

prototype-tracking regions identified in Bowman and Zeithamova (2018) differed from the 

exemplar-tracking regions identified in Mack et al. (2013), suggesting that the representational 

flexibility apparent across studies may be possible because different representations form in 

distinct brain regions. Wutz and colleagues (2018) directly compared training on low vs. high 

variability sets in monkeys while recording from prefrontal cortex. They found that distinct 

prefrontal circuits and distinct oscillation frequencies were involved in learning to categorize low 

vs. high distortions of category prototypes. Thus, depending on the coherence of category 

examples, category information can be coded at different levels of abstraction, possibly 

supported by different brain regions. 

Our findings that the training set structure affects the representations underlying later 

generalization is consistent with the broader literature showing multiple mechanisms underlying 

category knowledge (Ashby & Maddox, 2005; Seger & Miller, 2010). By showing the critical role 
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of category coherence at training, we add to a body of work showing that features of the 

learning set and context can shift the extent to which individuals rely on one mechanism or 

another. For example, training manipulations such as observational versus feedback-based 

training (Shohamy et al., 2004), intentional versus incidental learning (Aizenstein et al., 2000; 

Reber, Gitelman, Parrish, & Mesulam, 2003), learning of single versus contrasting categories 

(Zeithamova, Maddox, & Schnyer, 2008), and learning of rule conforming items versus 

exceptions (Davis, Love, & Preston, 2012) have all been shown to engage different neural 

systems. Behavioral evidence shows that features of training can also affect category 

representations by highlight distinctive vs. characteristic features. For example, when training is 

interleaved such that items from opposing categories are presented in an intermixed fashion, 

individuals tend to better encode features that distinguish categories compared to when items 

from the same category are presented together and opposing categories are presented across 

separate blocks (Carvalho & Goldstone, 2014, 2017). Similarly, whether participants learn a 

single (A/non-A) or contrasting (A/B) categories and whether those categories are separable by 

a simple rule (rule-based) or require integration across multiple dimensions (information 

integration) can effect whether individuals tend to focus on similarity within the category vs. 

differences across opposing categories (Ell, Smith, Peralta, & Hélie, 2017; Hélie, Shamloo, & 

Ell, 2017, 2018). Adding to this work, the present study provides new evidence for flexibility in 

how individuals represent category information based on demands at the time of learning. 

Unlike category learning and generalization, recognition accuracy measures and 

recognition model fits were much less affected by training conditions. Instead we found that 

recognition performance was not above chance in half of the training groups, with high rates of 

false alarms to category prototypes in most conditions. Such false alarms are a typical 

consequence of emphasizing commonalities among items during encoding (Arndt & Hirshman, 

1998; Roediger et al., 1995). Supporting our hypothesis that individuals would be less likely to 

rely on prototypes when making recognition judgments, we found a smaller proportion of 
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prototype users in recognition than in categorization. We also found lower sensitivity to 

prototype similarity for recognition compared to categorization judgments. In contrast, sensitivity 

to exemplar similarity was numerically greater during recognition compared to categorization. 

Because prototype representations discard details of individual category members that are 

critical for distinguishing between old and new items, they are much less useful for recognition 

than for categorization. However, while most prototype users shifted away from a prototype 

strategy, it seems that they had not formed another representation that could support 

recognition judgments and instead were best fit by a random model. This may indicate that 

participants did not develop an exemplar representation sufficient to support the fine-grained 

discrimination required for stimuli with so many overlapping features or that the exemplar 

representation posited here is in fact only one component of a more complex recognition 

memory system (Tulving, 1987; Yonelinas, 2002).  

Finally, we evaluated the relationship between recognition of individual stimuli and 

category generalization success, testing the contrasting predictions of current theories of 

generalization. We found a marginally significant relationship between generalization success 

and rates of false alarms, indicating that better generalization was associated with lower 

memory specificity. This result runs contrary to the single system prediction that category 

generalization and recognition performance should be positively related because both depend 

on the same representation (Banino et al., 2016; Hintzman & Ludlam, 1980).  However, 

because the effect was only marginally significant and recognition was poor overall, it does not 

clearly differentiate between the alternatives. A plausible interpretation is that encoding specific 

information vs. generalizing across related events are competing strategies, resulting in a trade-

off between memory specificity and generalization (Knowlton & Squire, 1993; Marsh et al., 

2015; Varga et al., 2019; Zeithamova et al., 2012). However, it is not possible to confidently 

reject the alternative that specific and generalized representations form in parallel and coexist 

rather than trade-off (Brunec et al., 2018; Collin et al., 2015; Schapiro, Turk-Browne, Botvinick, 
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& Norman, 2017; Schlichting et al., 2015), but the formation of specific representation was 

especially difficult with the current stimuli. Thus, future studies are needed to more decisively 

determine the categorization-recognition relationship. 

 Understanding how to promote acquisition of generalizable knowledge is of interest 

across a number of domains, with particular interest in the role of coherence vs. variability in 

learning examples. For example, a key question in linguistics is how people learn spoken 

language from multiple speakers, each having their own speech production quirks that make 

learning experiences noisy (Bulgarelli & Weiss, 2019; Estes & Lew-Williams, 2015; Houston & 

Jusczyk, 2000; Kuhl, 1979). In education, the coherence of materials, such as textbooks 

(Kintsch, 1994) and multimedia presentations (Mayer & Fiorella, 2014), has been identified as a 

key factor in determining comprehension and retention. Our finding that learning from a 

coherent set of typical examples promoted abstraction and facilitated generalization to a wide 

variety of examples suggests that consistency rather than variability may be most beneficial to 

learning. Future research examining the generalizability of these findings to other kinds of 

materials would be helpful in determining their degree of applicability across domains.  Our 

finding that typical examples are more likely to be represented in a joint summary representation 

(such as a prototype) may also relate to findings on different levels of generalization from typical 

vs. atypical category members. People infer that traits of typical members apply to the entire 

category but traits of atypical members apply narrowly (Rips, 1975). Fear responses conditioned 

from typical members are more likely to be generalized to other members of the same category 

than those learned from atypical members (Dunsmoor & Murphy, 2014). Thus, typical examples 

may be more likely to be represented jointly, which in turn may affect the degree to which new 

information learned about one category member is generalized to others in the same category. 

Linking related information into categories is a key way that individuals organize their 

experiences to support future decision-making. In the present study, we showed that structuring 

information in a way that emphasizes commonalities among items facilitates acquisition of 
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category knowledge and promotes generalization to a wide range of new items. Accompanying 

benefits to generalization performance, learning from more coherent sets of examples also 

promoted formation of abstract category representations indexed by formal model fits. Lastly, 

while reliance on abstract prototype representations was reduced when subjects made 

recognition as opposed to categorization judgments, this effect was driven by a failure of either 

model to explain response, suggesting that subjects did not form strong representations of 

individual category members.  Together, these results suggest that learning from a coherent set 

of examples is an efficient means of forming abstract knowledge that is highly transferable.  
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Appendix A 

 
For each participant, the prototype of category A was chosen by randomly selecting from one of 
four possible prototypes (Table 1). The prototype of category B was defined as the stimulus 
sharing no features with the prototype of category A. Tables 2-8 present structures of stimuli for 
each training group coded with respect to the first possible category A prototype (i.e., 
1111111111, with 0000000000 serving as the category B prototype). For each training group, 
the authors pre-defined possible stimuli for the training sets. For each training group, an initial 
set was created that contained feature values for half of the total number of training stimuli (i.e., 
enough for one of the two categories). Feature values were selected to ensure that all 
dimensions were equally predictive of category membership. Three additional sets were created 
by shuffling which feature values were associated with each dimension. For example, in Table 
2, each row represents a stimulus in a given set and the columns represent the ten dimensions. 
The feature values associated with Dimension 1 in Set 1 are associated with Dimension 8 in Set 
2. A participant’s training set was created by randomly selecting two of these sets, recoding the 
first with regard to the category A prototype, and recoding the second with regard to the 
category B prototype, and combining them into a single training set with stimuli for both 
categories. Note: groups trained on sets presented in Tables 6 and 7 were collapsed for all 
analyses. 
 
Table A1. Possible category A prototypes 

Dimension 
1 2 3 4 5 6 7 8 9 10 
1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 1 1 1 1 1 
1 1 0 0 1 1 0 0 1 1 
0 1 1 1 0 0 0 1 0 0 

 
Table A2. Possible training stimuli for 5 items: 60% training group 
 Dimension 
Set  1 2 3 4 5 6 7 8 9 10 
1 1 0 0 1 0 1 0 1 1 1 
1 1 1 1 0 1 0 0 1 0 1 
1 0 1 1 1 0 1 1 0 0 1 
1 0 1 0 0 1 1 1 1 1 0 
1 1 0 1 1 1 0 1 0 1 0 
2 0 1 1 1 0 0 1 1 1 0 
2 0 0 0 0 1 1 1 1 1 1 
2 1 0 1 1 1 0 1 0 0 1 
2 1 1 0 1 0 1 0 0 1 1 
2 1 1 1 0 1 1 0 1 0 0 
3 1 1 0 0 0 1 1 1 0 1 
3 0 0 0 1 1 1 1 0 1 1 
3 1 0 1 0 1 0 1 1 1 0 
3 0 1 1 1 1 1 0 1 0 0 
3 1 1 1 1 0 0 0 0 1 1 
4 0 1 0 0 1 1 1 1 0 1 
4 1 1 1 0 0 1 0 1 1 0 
4 1 0 1 1 1 0 1 1 0 0 
4 1 0 0 1 1 1 0 0 1 1 
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4 0 1 1 1 0 0 1 0 1 1 
 
Table A3. Possible training stimuli for 6 items: 67% training group 
 Dimension 
Set  1 2 3 4 5 6 7 8 9 10 
1 1 1 0 0 1 1 1 1 1 1 
1 0 0 1 1 1 1 1 1 1 1 
1 1 1 0 1 0 0 0 1 1 1 
1 0 1 1 1 0 1 1 0 0 1 
1 1 0 1 1 1 0 1 0 1 0 
1 1 1 1 0 1 1 0 1 0 0 
2 1 0 1 1 1 1 1 1 0 1 
2 1 1 0 1 1 1 0 1 1 1 
2 0 0 1 1 1 1 1 0 1 0 
2 1 1 1 0 0 1 0 0 1 1 
2 0 1 0 1 0 0 1 1 1 1 
2 1 1 1 0 1 0 1 1 0 0 
3 1 1 1 0 1 0 1 1 1 1 
3 1 1 1 1 0 1 0 1 1 1 
3 1 1 0 0 1 1 1 1 0 0 
3 0 0 1 1 1 1 0 1 1 0 
3 1 0 0 1 0 1 1 0 1 1 
3 0 1 1 1 1 0 1 0 0 1 
4 1 1 1 0 1 1 1 0 1 1 
4 1 1 1 1 1 0 1 1 0 1 
4 0 1 1 1 0 1 0 0 1 1 
4 1 0 1 1 1 1 0 1 0 0 
4 1 0 0 1 0 0 1 1 1 1 
4 0 1 0 0 1 1 1 1 1 0 

 
Table A4. Possible training stimuli for 10 items: 70% training group 
 Dimension 
Set  1 2 3 4 5 6 7 8 9 10 
1 1 0 1 1 1 1 1 0 1 1 
1 1 1 0 1 0 1 1 1 1 1 
1 1 1 1 1 1 0 1 1 1 0 
1 1 1 1 1 0 0 0 1 1 1 
1 0 1 1 1 1 1 1 1 0 0 
1 0 1 1 0 1 1 0 1 1 1 
1 1 0 1 1 0 1 1 1 0 1 
1 1 1 0 0 1 1 0 0 1 1 
1 1 0 0 1 1 0 1 1 0 1 
1 0 1 1 0 1 1 1 0 1 0 
2 1 1 0 1 1 1 1 1 0 1 
2 1 0 1 1 1 1 1 0 1 1 
2 1 1 1 1 0 1 1 1 1 0 
2 1 1 1 0 1 0 1 1 1 0 
2 0 1 1 1 1 1 0 1 1 0 
2 1 1 1 0 1 0 0 1 1 1 
2 0 1 0 1 1 1 1 0 1 1 
2 1 1 0 1 0 1 1 0 0 1 
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2 1 0 1 0 0 0 1 1 1 1 
2 0 0 1 1 1 1 0 1 0 1 
3 1 1 0 1 1 1 1 1 0 1 
3 1 1 1 1 0 1 1 1 1 0 
3 1 1 1 0 0 1 1 1 1 1 
3 0 1 1 1 1 1 1 1 0 0 
3 1 0 1 1 1 1 0 0 1 1 
3 1 0 1 0 1 1 0 1 1 1 
3 1 0 1 1 1 0 1 1 0 1 
3 1 1 0 1 0 1 1 0 1 0 
3 0 1 1 0 1 0 1 0 1 1 
3 0 1 0 1 1 0 0 1 1 1 
4 0 1 1 1 1 1 0 1 1 1 
4 0 1 0 1 1 1 1 1 1 1 
4 1 1 0 1 0 1 1 1 1 1 
4 1 0 1 1 0 0 1 1 1 1 
4 1 1 1 0 1 1 1 1 0 0 
4 1 1 0 1 1 1 1 0 0 1 
4 1 0 1 0 1 1 1 0 1 1 
4 1 1 1 1 0 0 0 1 1 0 
4 0 0 1 1 1 1 1 0 1 0 
4 1 1 1 0 1 0 0 1 0 1 

 
Table A5. Possible training stimuli for 7 items: 72% training group 
 Dimension 
Set  1 2 3 4 5 6 7 8 9 10 
1 1 1 0 0 1 1 1 1 1 1 
1 0 0 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 0 0 1 1 
1 1 1 1 1 0 0 1 1 1 1 
1 1 1 0 1 1 0 1 1 0 0 
1 1 0 1 1 0 1 0 1 0 1 
1 0 1 1 0 1 1 1 0 1 0 
2 1 1 0 1 0 1 1 1 1 1 
2 1 1 1 1 1 1 0 1 1 0 
2 1 1 1 1 1 0 1 1 0 1 
2 0 1 1 1 1 1 1 0 1 1 
2 1 0 1 0 1 1 0 0 1 1 
2 0 1 1 0 0 0 1 1 1 1 
2 1 0 0 1 1 1 1 1 0 0 
3 0 1 1 1 0 1 1 1 1 1 
3 1 1 1 0 1 1 1 1 1 0 
3 1 0 1 1 1 1 1 1 0 1 
3 1 1 0 1 1 1 0 1 1 1 
3 1 1 1 0 1 0 0 0 1 1 
3 1 0 0 1 0 1 1 0 1 1 
3 0 1 1 1 1 0 1 1 0 0 
4 1 0 1 0 1 1 1 1 1 1 
4 1 1 1 1 1 1 0 0 1 1 
4 1 1 1 1 0 1 1 1 0 1 
4 0 1 0 1 1 1 1 1 1 1 
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4 1 0 0 1 1 0 1 1 1 0 
4 0 1 1 1 0 1 1 0 1 0 
4 1 1 1 0 1 0 0 1 0 1 

 
Table A6. Possible training stimuli for 8 items: 75% training group, 70% and 80% typical  
 Dimension 
Set  1 2 3 4 5 6 7 8 9 10 
1 1 1 0 1 1 1 1 1 1 0 
1 1 1 0 1 1 1 1 1 0 1 
1 1 1 1 1 0 1 1 1 1 0 
1 0 1 1 1 1 1 0 1 1 1 
1 1 0 1 0 1 0 1 1 1 1 
1 1 0 1 1 1 1 1 0 0 1 
1 0 1 1 0 0 1 1 1 1 1 
1 1 1 1 1 1 0 0 0 1 1 
2 1 1 1 0 1 1 1 0 1 1 
2 1 1 1 1 0 0 1 1 1 1 
2 1 1 1 1 1 0 1 1 0 1 
2 0 1 1 1 1 1 1 1 1 0 
2 0 1 1 1 0 1 1 1 0 1 
2 1 1 0 0 1 1 0 1 1 1 
2 1 0 1 1 1 1 0 0 1 1 
2 1 0 0 1 1 1 1 1 1 0 
3 1 1 1 1 1 0 1 1 1 0 
3 1 0 1 1 1 1 1 1 1 0 
3 1 1 0 1 1 1 1 1 0 1 
3 1 1 1 1 0 1 0 1 1 1 
3 0 1 1 1 0 1 1 0 1 1 
3 1 1 0 0 1 1 0 1 1 1 
3 1 1 1 0 1 1 1 0 0 1 
3 0 0 1 1 1 0 1 1 1 1 
4 0 1 1 1 0 1 1 1 1 1 
4 1 1 1 1 1 1 0 1 1 0 
4 1 1 1 0 1 1 1 1 1 0 
4 1 1 1 1 0 1 0 1 1 1 
4 1 0 1 1 1 0 1 0 1 1 
4 0 1 1 1 1 0 1 1 0 1 
4 1 0 0 1 1 1 1 1 0 1 
4 1 1 0 0 1 1 1 0 1 1 

 
Table A7. Possible training stimuli for 8 items: 75% training group, 60% and 80% typical  
 Dimension 
Set  1 2 3 4 5 6 7 8 9 10 
1 0 1 1 1 1 1 0 1 1 1 
1 1 0 1 1 1 1 0 1 1 1 
1 1 1 0 1 1 1 1 0 1 1 
1 1 1 1 0 1 1 1 0 1 1 
1 1 0 1 1 0 1 1 1 1 1 
1 0 1 1 1 1 0 1 1 1 1 
1 1 1 1 0 1 0 1 1 0 0 
1 1 1 0 1 0 1 1 1 0 0 
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2 1 1 0 1 1 1 1 1 1 0 
2 1 1 1 1 1 1 0 1 1 0 
2 1 1 1 1 0 1 1 0 1 1 
2 1 1 1 1 1 1 1 0 0 1 
2 0 1 1 1 1 1 0 1 1 1 
2 1 1 0 0 1 1 1 1 1 1 
2 1 0 1 0 1 0 1 1 0 1 
2 0 0 1 1 0 0 1 1 1 1 
3 1 1 0 1 1 0 1 1 1 1 
3 0 1 0 1 1 1 1 1 1 1 
3 1 1 1 0 1 1 1 1 1 0 
3 1 1 1 0 1 1 1 0 1 1 
3 0 1 1 1 1 1 0 1 1 1 
3 1 1 1 1 0 0 1 1 1 1 
3 1 0 1 1 0 1 1 0 0 1 
3 1 0 1 1 1 1 0 1 0 0 
4 0 1 0 1 1 1 1 1 1 1 
4 0 1 1 1 1 1 1 1 1 0 
4 1 1 1 1 1 1 1 0 0 1 
4 1 0 1 1 1 1 1 0 1 1 
4 1 1 1 1 0 1 1 1 1 0 
4 1 1 0 1 1 1 0 1 1 1 
4 1 0 1 0 1 0 0 1 1 1 
4 1 1 1 0 0 0 1 1 0 1 

 
Table A8. Possible training stimuli for 5 items: 80% training group 
 Dimension 
Set  1 2 3 4 5 6 7 8 9 10 
1 1 0 1 1 1 0 1 1 1 1 
1 0 1 1 1 1 1 1 1 0 1 
1 1 1 1 0 1 1 1 1 1 0 
1 1 1 1 1 1 1 0 0 1 1 
1 1 1 0 1 0 1 1 1 1 1 
2 0 1 1 1 1 1 1 0 1 1 
2 1 1 0 1 1 1 0 1 1 1 
2 1 1 1 1 1 0 1 1 0 1 
2 1 0 1 1 0 1 1 1 1 1 
2 1 1 1 0 1 1 1 1 1 0 
3 1 1 1 0 1 0 1 1 1 1 
3 1 0 1 1 1 1 1 1 0 1 
3 1 1 1 1 1 1 0 0 1 1 
3 1 1 1 1 0 1 1 1 1 0 
3 0 1 0 1 1 1 1 1 1 1 
4 1 0 1 1 1 1 1 1 0 1 
4 1 1 0 1 0 1 1 1 1 1 
4 1 1 1 1 1 0 1 1 1 0 
4 1 1 1 0 1 1 1 0 1 1 
4 0 1 1 1 1 1 0 1 1 1 

 


