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Abstract There is a long-standing debate about whether categories are represented by

individual category members (exemplars) or by the central tendency abstracted from individual

members (prototypes). Neuroimaging studies have shown neural evidence for either exemplar

representations or prototype representations, but not both. Presently, we asked whether it is

possible for multiple types of category representations to exist within a single task. We designed a

categorization task to promote both exemplar and prototype representations and tracked their

formation across learning. We found only prototype correlates during the final test. However,

interim tests interspersed throughout learning showed prototype and exemplar representations

across distinct brain regions that aligned with previous studies: prototypes in ventromedial

prefrontal cortex and anterior hippocampus and exemplars in inferior frontal gyrus and lateral

parietal cortex. These findings indicate that, under the right circumstances, individuals may form

representations at multiple levels of specificity, potentially facilitating a broad range of future

decisions.

Introduction
The ability to form new conceptual knowledge is a key aspect of healthy memory function. There has

been a longstanding debate about the nature of the representations underlying conceptual knowl-

edge, which is exemplified in the domain of categorization. Some propose that categories are repre-

sented by their individual category members and that generalizing the category label to new

examples involves joint retrieval and consideration of individual examples encountered in the past (i.

e., exemplar models, Figure 1A; Kruschke, 1992; Medin and Schaffer, 1978; Nosofsky, 1986).

Others propose that categories are represented by their central tendency – an abstract prototype

containing all the most typical features of the category (i.e., prototype models, Figure 1B;

Homa, 1973; Posner and Keele, 1968; Reed, 1972). Category generalization then involves consid-

eration of a new item’s similarity to relevant category prototypes.

Both the prototype and exemplar accounts have been formalized as quantitative models and fit

to behavioral data for decades, with numerous studies supporting each model (exemplar meta-anal-

ysis: Nosofsky, 1988; prototype meta-analysis: Smith and Minda, 2000). Neuroimaging studies

have also provided support for these models. Studies using univariate contrasts showed overlap

between neural systems supporting categorization and recognition (Nosofsky et al., 2012), as well

as medial temporal lobe involvement in categorization (Koenig et al., 2008; Lech et al., 2016;

Nomura et al., 2007), both of which have been interpreted as indicating a role of exemplar retrieval

in categorization. More recently, studies have used parameters generated from formal prototype

and exemplar models with neuroimaging data, but with conflicting results. Mack et al., 2013 found

similar behavioral fits for the two models, but better fit of the exemplar model to brain data. Parts
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of the lateral occipital, lateral prefrontal and lateral parietal cortices tracked exemplar model predic-

tors. No region tracked prototype predictors. The authors concluded that categorization decisions

are based on memory for individual items rather than abstract prototypes. In contrast, Bowman and

Zeithamova, 2018 found better fit of the prototype model in both brain and behavior. The ventro-

medial prefrontal cortex and anterior hippocampus tracked prototype predictors, demonstrating

that neural category representations can involve more than representing the individual category

members, even in regions like the hippocampus typically thought to support memory for specific

episodes.

Interestingly, the different brain regions identified across these two studies aligned well with the

larger literature contrasting memory specificity with memory integration and generalization. Lateral

prefrontal regions are thought to resolve interference between similar items in memory (Badre and

Wagner, 2005; Bowman and Dennis, 2016; Jonides et al., 1998; Kuhl et al., 2007), and lateral

parietal cortex supports recollective experience (Vilberg and Rugg, 2008) and maintains high fidel-

ity representations of individual items during memory retrieval (Kuhl and Chun, 2014; Xiao et al.,

2017). That these regions also tracked exemplar predictors suggests that these functions may also

support categorization by maintaining representations of individual category members as distinct

from one another and from non-category members. In contrast, the VMPFC and hippocampus are

known to support episodic inference through memory integration of related episodes

(Schlichting et al., 2015; Shohamy and Wagner, 2008; Zeithamova et al., 2012) and encoding of

new information in light of prior knowledge (van Kesteren et al., 2012). That these regions also

Figure 1. Category-learning task. Conceptual depiction of (A) exemplar and (B) prototype models. Exemplar: categories are represented as individual

exemplars. New items are classified into the category with the most similar exemplars. Prototype: categories are represented by their central

tendencies (prototypes). New items are classified into the category with the most similar prototype. (C) Example stimuli. The leftmost stimulus is the

prototype of category A and the rightmost stimulus is the prototype of category B, which shares no features with prototype A. Members of category A

share more features with prototype A than prototype B, and vice versa. (D) During the learning phase, participants completed four study-test cycles

while undergoing fMRI. In each cycle, there were two runs of observational study followed by one run of an interim generalization test. During

observational study runs, participants saw training examples with their species labels without making any responses. During interim test runs,

participants classified training items as well as new items at varying distances. (E) After all study-test cycles were complete, participants completed a

final generalization test that was divided across four runs. Participants classified training items as well as new items at varying distances.
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tracked prototype predictions suggests that prototype extraction may involve integrating across cat-

egory exemplars, linking across items sharing a category label to form an integrated, abstract cate-

gory representation. However, as neural prototype and exemplar representations were identified

across studies that differed in both task details and in the categorization strategies elicited, it has

not been possible to say whether differences in the brain regions supporting categorization were

due to differential strength of prototype versus exemplar representations or some other aspect of

the tasks.

It is possible that the seemingly conflicting findings regarding the nature of category representa-

tions arose because individuals are capable of forming either type of representation. Prior studies

have compared different category structures and task instructions to identify multiple memory sys-

tems supporting categorization (e.g., Aizenstein et al., 2000; Ashby et al., 1998; Ell et al., 2010;

Zeithamova et al., 2008). While such findings show that the nature of concept representations

depend on task demands, it is unclear if both prototype and exemplar representations can co-exist

within the same task. Such mixed representations have been identified in episodic memory tasks,

with individuals sometimes forming both integrated and separated representations for the same

events (Schlichting et al., 2015) and a single episode sometimes represented at multiple levels of

specificity, even within the hippocampus (Collin et al., 2015). We also know that individuals some-

times use a mix of strategies in categorization, for example when most category members are classi-

fied according to a simple rule while others are memorized as exceptions to that rule (Davis et al.,

2012; Nosofsky et al., 1994). These differing representations may emerge because they allow for

flexibility in future decision-making, as abstract representations that discard details of individual

items are well suited to making generalization judgments but are poorly suited to judgments that

require specificity. Alternatively, prototype representations may emerge as a byproduct of retrieving

category exemplars, and they may themselves be encoded via recurrent connections, becoming an

increasingly robust part of the concept representation (Hintzman, 1986; Koster et al., 2018;

Zeithamova and Bowman, 2020). Thus, under some circumstances, both prototype and exemplar

representations may be apparent within the same task.

To test this idea, we used fMRI in conjunction with a categorization task designed to balance

encoding of individual examples vs. abstract information. This task used a training set with examples

relatively close to the prototype, which has been shown to promote prototype abstraction

(Bowman and Zeithamova, 2018; Bowman and Zeithamova, 2020). To promote exemplar encod-

ing, we used an observational training task rather than feedback-based training (Cincotta and

Seger, 2007; Heindel et al., 2013; Poldrack et al., 2001). We then looked for evidence of proto-

type and exemplar representations in the brain and in behavioral responses. In behavior, the proto-

type model assumes that categories are represented by their prototypes and predicts that subjects

should be best at categorizing the prototypes themselves, with decreasing accuracy for items with

fewer shared features with prototypes. The prototype model does not make differential predictions

for new and old (training) items at the same distance from the prototype. The exemplar model

assumes that categories are represented by the previously encountered exemplars and predicts that

subjects should be best at categorizing old items and new items closest to the old exemplars. The

mathematical formalizations of the models further take into account that a participant may not pay

equal attention to all stimulus features and that perceived distance increases non-linearly with physi-

cal distance (see Methods for more details). We note that it is sometimes possible to observe behav-

ioral evidence for both types of representations. For example, in our prior study (Bowman and

Zeithamova, 2018), participants’ behavior was better explained by the prototype model than the

exemplar model, but we also observed an advantage for old items relative to new items at the same

distance to prototypes, in line with exemplar but not prototype model predictions.

The key behavioral prediction of each model is the trial-by-trial probability of responding cate-

gory A vs category B. These probabilities are determined for each trial by the relative similarity of

the test item to the category A and category B representations proposed by each model. Once

these probabilities are generated for each model, they are compared to the participant’s actual

responses to determine which model better predicted the subject’s observed behavior. We also

used output from the models to generate subject-specific, trial-by-trial fMRI predictions. These were

derived from the similarity of each test item to either an exemplar-based or prototype-based cate-

gory representation (see Methods for details). We then measured the extent to which prototype-

and exemplar-tracking brain regions could be identified, focusing on the VMPFC and anterior
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hippocampus as predicted prototype-tracking regions, and lateral occipital, prefrontal, and parietal

regions as predicted exemplar-tracking regions.

We also asked whether there are shifts across learning in the type of concept representation indi-

viduals rely on to make categorization judgments. While some have suggested that memory systems

compete with one another during learning (Poldrack and Packard, 2003; Seger, 2005), prior stud-

ies fitting exemplar and prototype models to fMRI data have done so only during a categorization

test that followed extensive training, potentially missing dynamics occurring earlier in concept forma-

tion. Notably, memory consolidation research suggests that memories become abstract over time,

often at the expense of memory for specific details (McClelland et al., 1995; Moscovitch et al.,

2016; Payne et al., 2009; Posner and Keele, 1970), suggesting that early concept representations

may be exemplar-based. In contrast, research on schema-based memory shows that abstract knowl-

edge facilitates learning of individual items by providing an organizational structure into which new

information can be incorporated (Bransford and Johnson, 1972; Tse et al., 2007; van Kesteren

et al., 2012). Thus, early learning may instead emphasize formation of prototype representations,

with exemplars emerging later. Finally, abstract and specific representations need not trade-off in

either direction. Instead, the brain may form these representations in parallel (Collin et al., 2015;

Schlichting et al., 2015) without trade-off between concept knowledge and memory for individual

items (Schapiro et al., 2017), generating the prediction that both prototype and exemplar represen-

tations may grow in strength over the course of learning.

In the present study, participants underwent fMRI scanning while learning two novel categories or

‘species,’ which were represented by cartoon animals varying on eight binary dimensions

(Figure 1C). The learning phase consisted of two types of runs: observational study runs and interim

generalization test runs (Figure 1D). During study runs, participants passively viewed individual cate-

gory members with their accompanying species label (‘Febble’ or ‘Badoon’). All of the items pre-

sented during study runs differed by two features from their respective prototypes (for example,

exemplars depicted in Figure 1A). After completing two runs of observational study, participants

underwent an interim generalization test run in which participants classified cartoon animals into the

two species. Test items included the training items as well as new items at varying distances from

category prototypes. Across the entire learning phase, there were four study-test cycles, with differ-

ent new test items at every cycle. The learning phase was followed by a final generalization test,

whose structure was similar to the interim test runs but more extensive (Figure 1E).

To test for evidence of prototype and exemplar representations in behavior across the group, we

compared accuracy for items varying in distance from category prototypes and for an accuracy

advantage for training items relative to new items matched for distance from category prototypes.

We also fit formal prototype and exemplar models to behavior in individual subjects, which involves

computing the similarity of a given test item to either the prototype of each category (prototype

model) or the individual training items from each category (exemplar model), which is then used to

make predictions about how likely it is that an item will be classified into one category versus the

other. The model whose predictions better match a given subject’s actual classification responses

will have better fit. However, it is also possible that evidence for each of the models will be similar,

potentially reflecting a mix of representations.

To test for co-existing prototype and exemplar correlates in the brain during interim and final

generalization tests, we used latent metrics generated from each model as trial-by-trial predictors of

BOLD activation in six regions of interest (Figure 2): ventromedial prefrontal cortex, anterior hippo-

campus, posterior hippocampus, lateral occipital cortex, inferior frontal gyrus, and lateral parietal

cortex. To identify potential changes with learning, we tested these effects separately in the first half

of the learning phase (interim tests 1 and 2) and second half of the learning phase (interim tests 3

and 4) as well as in the final test.

Bowman et al. eLife 2020;9:e59360. DOI: https://doi.org/10.7554/eLife.59360 4 of 24

Research article Neuroscience

https://doi.org/10.7554/eLife.59360


Results

Behavioral
Accuracy
Interim tests
Categorization performance across the four interim tests is presented in Figure 3A. We first tested

whether generalization accuracy improved across the learning phase and whether generalization of

category labels to new items differed across items of varying distance to category prototypes. There

was a significant main effect of interim test number [F(3,84)=3.27, p=0.03, h2

p = 0.11], with a signifi-

cant linear effect [F(1,28)=9.91, p=0.004, h2

p = 0.26] driven by increasing generalization accuracy

across the interim tests. There was also a significant main effect of item distance [F(3,84)=51.75,

p<0.001, h2

p = 0.65] with a significant linear effect [F(1,28)=126.04, p<0.001, h2

p = 0.82] driven by

better accuracy for items closer to category prototypes. The interim test number x item distance

interaction effect was not significant [F(9,252)=0.62, p=0.78, h2

p = 0.02]. We next tested whether

accuracy for old training items was higher than new items of the same distance (i.e., distance 2) and

whether that differed over the course of the learning phase. There was a linear effect of interim test

number [F(1,28)=16.78, p<0.001, h2

p = 0.38] driven by increasing accuracy across the tests. There

was also a significant main effect of item type (old vs. new) [F(1,28)=8.76, p=0.01, h2

p = 0.24], driven

by higher accuracy for old items (M = 0.83, SD = 0.11) relative to new items of the same distance

from the prototypes (M = 0.77, SD = 0.10). The interim test number x item type interaction effect

was not significant [F(3,84)=0.35, p=0.79, h2

p = 0.01], indicating that the advantage for old compared

to new items was relatively stable across learning. To summarize, we observed a reliable typicality

gradient where accuracy decreased with the distance from the prototypes and both old and new

items at the distance two numerically fell between distance 1 and distance three items (Figure 3A).

However, within distance two items, we also observed a reliable advantage for the old items com-

pared to new items, an aspect of the data that would not be predicted by the prototype model.

Final test
Accuracies for generalization items at each distance from the prototype as well as for training items

(all training items were at distance two from the prototypes) are presented in Figure 3B. A repeated

measures ANOVA on new items that tested the effect of distance from category prototypes on gen-

eralization accuracy showed a main effect of item distance [F(3,84)=53.61, p<0.001, h2

p = 0.66] that

was well characterized by a linear effect [F(1,28)=124.55, p<0.001, h2

p = 0.82]. Thus, the categoriza-

tion gradient driven by higher accuracy for items closer to category prototypes observed during

learning was also strong during the final test. In contrast, a paired t-test for accuracy on old relative

to new items at distance two showed that the numeric advantage for old relative to new items was

not statistically significant in the final test [t(28)=0.93, p=0.36, CI95[�0.03,.08], d = 0.22].

Figure 2. Regions of interest from a representative subject. Regions were defined in the native space of each

subject using automated segmentation in Freesurfer.
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Behavioral model fits
Figure 4a-c presents model fits in terms of raw negative log likelihood for each phase (lower num-

bers mean lower model fit error and thus better fit). Fits from the two models tend to be correlated.

If a subject randomly guesses on the majority trials (such as early in learning), neither model will fit

the subject’s responses well and the subject will have higher (mis)fit values for both models. As a

subject learns and does better on the task, fits of both models will tend to improve because items

Figure 3. Behavioral accuracy for interim and final tests. (A) Mean generalization accuracy across each of four

interim tests completed during the learning phase. Source data can be found in Figure 3—source data 1. (B)

Mean categorization accuracy in the final test. Source data can be found in Figure 3—source data 2. In both

cases, accuracies are separated by distance from category prototypes (0–3) and old vs. new (applicable to distance

two items only). Error bars represent the standard error of the mean.

The online version of this article includes the following source data for figure 3:

Source data 1. Behavioral accuracy - interim tests.

Source data 2. Behavioral accuracy - final test.
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close to the old exemplars of category A tend to be, on average, closer to the category A prototype

than the category B prototype and vice versa. For example, even if a subject had a purely exemplar

representation, the prototype model would still fit that subject’s behavior quite well, albeit not as

well as the exemplar model. Due to the correlation between model fits, the exact fit value for one

model is not sufficient to determine a subject’s strategy, only the relative fit of one model compared

to the other. Visually, in Figure 4a–c, subjects above the diagonal are better fit by the exemplar

model, participants below the line are better fit by the prototype model, and participants near the

line are fit comparably well by both models. Thus, although the model fits tend to be correlated

across-subject, the within-subject advantage for one model over another is still detectable and

meaningful. To quantify which model fits are comparable and which are reliably different, we took a

Monte Carlo approach and compared the observed model fit differences to a null distribution

Figure 4. Behavioral model fits. Scatter plots indicate the relative exemplar vs. prototype model fits for each subject. Fits are given in terms of negative

log likelihood (i.e., model error) such that lower values reflect better model fit. Each dot represents a single subject and the trendline represents equal

prototype and exemplar fit. Dots above the line have better exemplar relative to prototype model fit. Dots below the line have better prototype

relative to exemplar model fit. Pie charts indicate the percentage of individual subjects classified as best fit by the prototype model (in blue), the

exemplar model (in red), and those similarly fit by the two models (in grey). Model fits were computed separately for the 1st half of the learning phase

(interim tests 1–2, A,D), the 2nd half of the learning phase (interim tests 3–4, B,E), and the final test (C,F). Source data for all phases can be found in

Figure 4—source data 1.

The online version of this article includes the following source data for figure 4:

Source data 1. Behavioral model fits - all phases.
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expected by chance alone (see Methods for details). Figure 4d–f presents the percentage of sub-

jects that were classified as having used a prototype strategy, exemplar strategy, or having model

fits that were not reliably different from one another (‘similar’ fit). In the first half of learning, the

majority of subjects (66%) had similar prototype and exemplar model fits. In the second half of learn-

ing and the final test, the majority of subjects (56% and 66%, respectively) were best fit by the proto-

type model. Prototype and exemplar model fits may not differ reliably for a given subject, such as

when the subject’s responses are perfectly consistently with both models (as can happen in high-per-

forming subjects) or when some responses are more consistent with one model while other response

are more consistent with the other model. In such cases, a subject may be relying on a single repre-

sentation but we cannot discern which, or the subject may rely to some extent on both types of

representations.

We formally compared model fits for interim tests across the first and second half of the learning

phase using a repeated-measures ANOVA on raw model fits. There was a significant main effect of

learning phase [F(1,28)=39.74, p<0.001, h2

p = 0.59] with better model fits (i.e., lower error) in the sec-

ond half of the learning phase (M = 5.98, SD = 5.81) compared to the first half (M = 10.64,

SD = 6.72). There was also a significant main effect of model [F(1,28)=17.50, p<0.001, h2

p = 0.39]

with better fit for the prototype model (M = 7.86, SD = 5.95) compared to the exemplar model

(M = 8.77, SD = 6.02). The learning phase x model interaction effect was not significant [F(1,28)

=0.01, p=0.91, h
2

p = 0.001], with a similar prototype advantage in the first half (d = 0.13,

CI95[0.31,1.45]) as in the second half (d = 0.16, CI95[0.22,1.65]). When we compared prototype and

exemplar model fits in the final test, we again found a significant advantage for the prototype model

over the exemplar model [t(28)=3.53, p=0.001, CI95[0.89, 3.39], d = 0.23]. Thus, the prototype

model provided an overall better fit to behavioral responses throughout the learning phase and final

test, and the effect size of the prototype advantage was largest in the final test.

fMRI
Model-based MRI
The behavioral model fitting described above maximizes the correspondence between response

probabilities generated by the two models and the actual participants’ patterns of responses. Once

the parameters for the best fitting prototype and best fitting exemplar representations were esti-

mated from the behavioral data, we utilized them to construct model-based fMRI predictors, one

exemplar-based predictor and one prototype-based predictor for each participant. For each test

item, a model prediction was computed as the similarity of the item to the underlying prototype or

exemplar representation regardless of category (representational match; see Methods for details).

The trial-by-trial model predictions from both models were then used for fMRI analysis to identify

regions that have signal consistent with either model. Importantly, even when behavioral fits are

comparable between the two models, the neural model predictions can remain dissociable as they

more directly index the underlying representations that are different between the models

(Mack et al., 2013). For example, the prototypes would be classified into their respective categories

with high probability by either model because they are much closer to one category’s representation

than the other, generating similar behavioral prediction for that trial. However, the representational

match will be much higher for the prototype model than the exemplar model as the prototype is not

particularly close to any old exemplars. Thus, the neural predictors can dissociate the models to a

greater degree than behavioral predictions (Mack et al., 2013). Furthermore, the neural model fits

can help detect evidence of both kinds of representations, even if one dominates the behavior.

Learning phase
We first tested the degree to which prototype and exemplar information was represented across

ROIs and across different points of the learning phase. Using the data from the interim generaliza-

tion tests, we compared neural model fits across our six ROIs across the first and second half of the

learning phase. Full ANOVA results are presented in Table 1. Figure 5 presents neural model fits for

each ROI. Figure 5A represents 1st half of the learning phase, Figure 5B represents the 2nd half of

the learning phase, and Figure 5C represents fits collapsed across the entire learning phase (to illus-

trate the main effects of ROI, model and ROI x model interaction).
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As predicted, there was a significant ROI x Model interaction effect, indicating that there were

differences across regions in the type of category information that they tracked. To understand the

nature of this interaction, we computed follow-up t-tests on the neural model fits in each ROI, col-

lapsed across the first and second half of the learning phase. Consistent with prior work

(Bowman and Zeithamova, 2018), the VMPFC and anterior hippocampus (our predicted prototype

regions) significantly tracked prototype information [VMPFC: t(28) = 2.86, p=0.004, CI95[m >0.06],

d = 0.75]; [anterior hippocampus: t(28) = 1.88, p=0.04, CI95[m >0.009], d = 0.49]. Prototype corre-

lates were numerically but not significantly stronger than exemplar correlates in both regions

[VMPFC: t(28) = 1.23, p=0.11, d = 0.34, CI95[m >�0.03]]; (anterior hippocampus: t(28) = 0.87,

p=0.19, d = 0.22, CI95[m >�0.05]). For the predicted exemplar regions, we found that both lateral

parietal cortex and inferior frontal gyrus significantly tracked exemplar model predictions [lateral

parietal: t(28) = 2.06, p=0.02, CI95[m >0.02], d = 0.54]; [inferior frontal: t(28) = 2.40, p=0.01,

CI95[m >0.03], d = 0.63], with numerically positive exemplar correlates in lateral occipital cortex that

were not statistically significant [t(28)=0.78, p=0.22, CI95[m >�0.05], d = 0.20]. When comparing neu-

ral exemplar fits to neural prototype fits, there was a significant exemplar advantage in both lateral

parietal cortex [t(28)=3.00, p=0.003, d = 0.71, CI95[m >0.09]], and in inferior frontal gyrus [t(28)=2.63,

p=0.01, d = 0.67, CI95[m >0.06]], that did not reach significance in the lateral occipital cortex [t(28)

=1.44, p=0.08, d = 0.36, CI95[m >�0.06]].

As in our prior study, the posterior hippocampus showed numerically better fit of the exemplar

predictor, but neither the exemplar effect [t(28)=1.88, p=0.07, CI95[�0.01,.13], d = 0.49] nor the pro-

totype effect reached significance [t(28)=�1.14, p=0.26, CI95[�0.12,.03], d = 0.30]. Comparing the

effects in the two hippocampal regions as part of a 2 (hippocampal ROI: anterior, posterior) x 2

(model: prototype, exemplar) repeated-measures ANOVA, we found a significant interaction [F(1,28)

=9.04, p=0.006, h2

p = 0.24], showing that there is a dissociation along the hippocampal long axis in

the type of category information represented. Taken together, we found evidence for different types

of category information represented across distinct regions of the brain.

We were also interested in whether there was a shift in representations that could be detected

across learning. The only effect that included learning phase that approached significance was the

three-way ROI x model x learning phase interaction, likely reflecting the more pronounced region x

model differences later in learning (Figure 5A vs. Figure 5B).

Final test
Figure 5D presents neural model fits from each ROI during the final test. We tested whether the dif-

ferences across ROIs identified during the learning phase were also present in the final test. As dur-

ing the learning phase, we found a significant main effect of ROI [F(2.9,79.8)=9.13, p<0.001, h2

p

= 0.25, GG] and no main effect of model [F(1,28)=1.65, p=0.21, h2

p = 0.06]. However, unlike the

learning phase, we did not find a significant model x ROI interaction effect [F(3.3,91.2)=1.81,

p=0.15, h2

p = 0.06, GG]. Because this was a surprising finding, we wanted to better understand what

had changed from the learning phase to the final test. Thus, although the ROI x model interaction

was not significant in the final test, we computed follow-up tests on regions that had significantly

tracked prototype and exemplar predictors during the learning phase. As in the learning phase,

both the VMPFC and anterior hippocampus continued to significantly track prototype predictors

Table 1. ANOVA results for model-based fMRI during the learning phase.

Effect df F P h
2

p

ROI 3.4,95.6 GG 3.90 .002 .12

Model 1,28 2.60 .12 .09

Learning half 1,28 2.18 .15 .07

ROI x Model 2.9,80.3 GG 5.91 .001 .17

ROI x Learning half 3.1,86.9 GG 0.53 .67 .02

Model x Learning half 1,28 0.09 .76 .003

ROI x Model x Learning Half 3.2,89.6 GG 2.31 .08 .08
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Figure 5. Neural prototype and exemplar model fits. Neural model fits for each region of interest for (A) the first half of the learning phase, (B) the

second half of the learning phase, (C) the overall learning phase (averaged across the first and second half of learning), and (D) the final test. Prototype

fits are in blue, exemplar fits in red. Neural model fit is the effect size: the mean/SD of ß-values within each ROI, averaged across appropriate runs.

VMPFC = ventromedial prefrontal cortex, ahip = anterior hippocampus, phip = posterior hippocampus, LO = lateral occipital cortex, IFG = inferior

Figure 5 continued on next page
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during the final test with effect sizes similar to those observed during learning [VMPFC: t(28) = 2.83,

p=0.004, CI95[m >0.06], d = 0.74]; [anterior hippocampus: t(28) = 1.98, p=0.03, CI95[m >0.01],

d = 0.52]. Here, prototype correlates were significantly stronger than exemplar correlates in the

anterior hippocampus [t(28)=2.28, p=0.02, d = 0.63], CI95[m >0.02] and marginally stronger in the

VMPFC [t(28)=1.67, p=0.053, d = 0.46, CI95[m > - 0.03]]. However, exemplar correlates did not reach

significance in any of the predicted exemplar regions (all t < 1.18, p>0.12, d < 0.31).

Discussion
In the present study, we tested whether exemplar- and prototype-based category representations

could co-exist in the brain within a single task under conditions that favor both exemplar memory

and prototype extraction. We found signatures of both types of representations across distinct brain

regions when participants categorized items during the learning phase. Consistent with predictions

based on prior studies, the ventromedial prefrontal cortex and anterior hippocampus tracked

abstract prototype information, and the inferior frontal gyrus and lateral parietal cortex tracked spe-

cific exemplar information. In addition, we tested whether individuals relied on different types of

representations over the course of learning. We did not find evidence of representational shifts

either from specific to abstract or vice versa. Instead, results suggested that both types of represen-

tations emerged together during learning, although prototype correlates came to dominate by the

final test. Together, we show that specific and abstract representations may instead exist in parallel

for the same categories.

A great deal of prior work in the domain of category learning has focused on whether classifica-

tion of novel category members relies on retrieval of individual category exemplars (Kruschke, 1992;

Medin and Schaffer, 1978; Nosofsky, 1986; Nosofsky and Stanton, 2005; Zaki et al., 2003) or

instead on abstract category prototypes (Dubé, 2019; Homa, 1973; Posner and Keele, 1968;

Reed, 1972; Smith and Minda, 2002). These two representations are often pitted against one

another with one declared the winner over the other, which is based largely on typical model-fitting

procedures for behavioral data. Indeed, fitting exemplar and prototype models to behavioral data in

the present study generally showed better fit of the prototype model over the exemplar model.

However, using neuroimaging allowed us to detect both types of representations apparent across

different parts of the brain. These results thus contribute to the ongoing debate about the nature of

category representations in behavioral studies of categorization by showing that individuals may

maintain multiple representations simultaneously even when one model shows better overall fit to

behavior.

In addition to contributing novel findings to a longstanding debate in the behavioral literature,

the present study also helps to resolve between prior neuroimaging studies fitting prototype and

exemplar models to brain data. Specifically, two prior studies found conflicting results: one study

found only exemplar representations in the brain (Mack et al., 2013) whereas another found only

prototype representations (Bowman and Zeithamova, 2018). Notably the brain regions tracking

exemplar predictions were different than those identified as tracking prototype predictions, showing

that these studies engaged different brain systems in addition to implicating different categorization

strategies. However, because the category structures, stimuli and analysis details also differed

between these studies, the between-studies differences in the identified neural systems could not

be uniquely attributed to the distinct category representations that participants presumably relied

on. The present data newly show that neural prototype and exemplar correlates can exist not only

across different task contexts but also within the same task, providing evidence that these neural dif-

ferences reflect distinct category representations rather than different task details.

Figure 5 continued

frontal gyrus, and Lat. Par. = lateral parietal cortex. Source data for interim tests is in Figure 5—source data 1 and Figure 5—source data 2 for the

final test.

The online version of this article includes the following source data for figure 5:

Source data 1. Neural model fits - interim tests.

Source data 2. Neural model fits - final test.
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Moreover, our results aligned with those found separately across two studies, replicating the role

of the VMPFC and anterior hippocampus in tracking prototype information (Bowman and Zeitha-

mova, 2018) and replicating the role of inferior prefrontal and lateral parietal cortices in tracking

exemplar information (Mack et al., 2013). Prior work has shown that the hippocampus and VMPFC

support integration across related experiences in episodic inference tasks (for reviews, see

Schlichting and Preston, 2017; Zeithamova and Bowman, 2020). We have now shown for the sec-

ond time that these same regions also track prototype information during category generalization,

suggesting that they may play a common role across seemingly distinct tasks. That is, integrating

across experiences may not only link related elements as in episodic inference tasks, but may also

serve to derive abstract information such as category prototypes. We also replicated a dissociation

within the hippocampus from Bowman and Zeithamova, 2018 in which the anterior hippocampus

showed significantly stronger prototype representations than the posterior hippocampus. Our find-

ings are consistent with a proposed gradient along the hippocampal long axis, with representations

becoming increasingly coarse in spatial and temporal scale moving from posterior to anterior por-

tions of the hippocampus (Brunec et al., 2018; Poppenk et al., 2013). Lastly, we note that while the

VMPFC significantly tracked prototype predictions, there was only a marginal difference between

prototype and exemplar correlates in this region. Thus, it remains an open question whether repre-

sentations in VMPFC are prototype specific or instead may reflect some mix of coding.

Our finding that IFG and lateral parietal cortices tracked exemplar predictions is consistent not

only with prior work showing exemplar correlates in these regions during categorization

(Mack et al., 2013), but also with the larger literature on their role in maintaining memory specificity.

In particular, IFG is thought to play a critical role in resolving interference between similar items

(Badre and Wagner, 2005; Bowman and Dennis, 2016; Jonides et al., 1998; Kuhl et al., 2007)

while lateral parietal cortices often show high fidelity representations of individual items and features

necessary for task performance (Kuhl and Chun, 2014; Xiao et al., 2017). The present findings sup-

port and further this prior work by showing that regions supporting memory specificity across many

memory tasks may also contribute to exemplar-based concept learning.

In addition to IFG and lateral parietal cortex, we predicted that lateral occipital cortex would

track exemplar information. This prediction was based both on its previously demonstrated exem-

plar correlates in the Mack et al. study as well as evidence that representations in visual regions shift

with category learning (Folstein et al., 2013; Freedman et al., 2001; Myers and Swan, 2012;

Palmeri and Gauthier, 2004). Such shifts are posited to be the result of selective attention to visual

features most relevant for categorization (Goldstone and Steyvers, 2001; Medin and Schaffer,

1978; Nosofsky, 1986). Consistent with the selective attention interpretation, Mack et al., showed

that LO tracked similarity between items when feature weights estimated by the exemplar model

were taken into account, above-and-beyond tracking physical similarity. In the present study, LO

showed an overall similar pattern as IFG and lateral parietal cortex, but exemplar correlates did not

reach significance during any phase of the experiment, providing only weak evidence for exemplar

coding in this region. However, in contrast to this prior work, all stimulus features in our study were

equally relevant for determining category membership. This aspect of our task may have limited the

role of selective attention in the present study and thus the degree to which perceptual regions

tracked category information.

In designing the present study, we aimed to increase exemplar strategy use as compared to our

prior study in which the prototype model fit reliably better than the exemplar model in 73% of the

sample (Bowman and Zeithamova, 2018). We included a relatively coherent category structure that

was likely to promote prototype formation (Bowman and Zeithamova, 2018; Bowman and Zeitha-

mova, 2020), but tried to balance it with an observational rather than feedback-based training task

in hopes of emphasizing individual items and promoting exemplar representations. The results sug-

gest some shift in model fits, albeit modest. The prototype strategy was still identified as dominant

in the latter half of learning and the final test, but we also observed more participants who were

comparably fit by both models. Moreover, we detected exemplar correlates in the brain in the pres-

ent study, albeit only during the second half of the learning phase. Thus, while the behavioral shift in

model fits was modest, it may have been sufficient to make exemplar representations detectable

despite prototype dominance in behavior. Notably, our prior study did show some evidence of

exemplar-tracking regions (including portions of LO and lateral parietal cortex) but only when we
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used a lenient, uncorrected threshold. This suggests that exemplar-based representations may form

in the brain even though they are not immediately relevant for the task at hand.

It may be that representations form at multiple levels of specificity to promote flexibility in future

decision-making because it is not always clear what aspects of current experience will become rele-

vant (Zeithamova and Bowman, 2020). Consistent with this idea, research shows that category rep-

resentations can spontaneously form alongside memory for individuals, even when task instructions

emphasize distinguishing between similar individuals (Ashby et al., 2020). In the present context,

accessing prototype representations may be efficient for making generalization judgments, but they

cannot on their own support judgments that require discrimination between separate experiences or

between members of the same category. Thus, exemplar representations may also form to support

judgments requiring specificity. Precedence for co-existing representations also comes from neuro-

imaging studies of spatial processing (Brunec et al., 2018), episodic inference (Schlichting et al.,

2015), and memory for narratives (Collin et al., 2015). These studies have all shown evidence for

separate representations of individual experiences alongside representations that integrate across

experiences. The present results show that these parallel representations may also be present during

category learning.

While co-existing prototype and exemplar representations were clear during the learning phase

of our task, they were not present during the final test phase. The VMPFC and anterior hippocampus

continued to track prototypes during the final test, but exemplar-tracking regions no longer

emerged. The lack of exemplar correlates in the brain was matched by a weaker exemplar effect in

behavior. While we observed a reliable advantage for old relative to new items matched for distance

during the interim tests, the old advantage was no longer significant in the final test. The effect size

for the prototype advantage in model fits was also larger in the final test than in the learning phase.

This finding was unexpected, but we offer several possibilities that can be investigated further in

future research. One possibility is that exemplar representations were weakened in the absence of

further observational study runs that had boosted exemplars in earlier phases. Similarly, framing it as

a ‘final test’ may have switched participants from trying to gather multiple kinds of information that

might improve later performance (i.e., both exemplar and prototype) to simply deploying the stron-

gest representation that they had, which seems to have been prototype-based. Alternatively, there

may be real, non-linear dynamics in how prototype and exemplar representations develop. For

example, exemplar representations may increase up to some threshold while individuals are encod-

ing these complex stimuli, then decrease as a result of repetition suppression (Desimone, 1996;

Gonsalves et al., 2005; Henson et al., 2002) once individual items are sufficiently well represented.

Of course, future studies will be needed to both replicate this finding and directly test these differ-

ing possibilities.

In addition to identifying multiple, co-existing types of category representations during learning,

we sought to test whether there were representational shifts as category knowledge developed.

While there was a prototype advantage in the brain during the final test, we found no evidence for a

shift between exemplar and prototype representations over the course of learning. Both prototype

and exemplar correlates showed numerical increases across learning in brain and behavior, suggest-

ing strengthening of both types of representations in parallel. Prior work has shown that individuals

may use both rules and memory for individual exemplars throughout learning without strong shifts

from one to the other (Thibaut et al., 2018). Others have suggested that there may be representa-

tional shifts during category learning, but rather than shifting between exemplar and prototype rep-

resentations, early learning may be focused on detecting simple rules and testing multiple

hypotheses (Johansen and Palmeri, 2002; Nosofsky et al., 1994; Paniukov and Davis, 2018),

whereas similarity-based representations such as prototype and exemplar representations may

develop later in learning (Johansen and Palmeri, 2002). Our findings are consistent with this frame-

work, with strong prototype and exemplar representations emerging across distinct regions primar-

ily in the second half of learning. Our results are also consistent with recent neuroimaging studies

showing multiple memory representations forming in parallel without need for competition

(Collin et al., 2015; Schlichting et al., 2015), potentially allowing individuals to flexibly use prior

experience based on current decision-making demands.
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Conclusion
In the present study, we found initial evidence that multiple types of category representations may

co-exist across distinct brain regions within the same categorization task. The regions identified as

prototype-tracking (anterior hippocampus and VMPFC) and exemplar-tracking (IFG and lateral parie-

tal cortex) in the present study align with prior studies that have found only one or the other. These

findings shed light on the multiple memory systems that contribute to concept representation and

provide novel evidence of how the brain may flexibly represent information at different levels of

specificity and that these representations may not always compete during learning.

Materials and methods

Participants
Forty volunteers were recruited from the University of Oregon and surrounding community and were

financially compensated for their research participation. This sample size was determined based on

effect sizes for neural prototype-tracking and exemplar-tracking regions estimated from prior studies

(Bowman and Zeithamova, 2018; Mack et al., 2013), allowing for detection of the minimum effect

size (prototype correlates in anterior hippocampus, d = 0.43 with n = 29) using a one-tailed, one-

sample t-test with at least 80% power. All participants provided written informed consent, and

Research Compliance Services at the University of Oregon approved all experimental procedures.

All participants were right-handed, native English speakers and were screened for neurological con-

ditions, medications known to affect brain function, and contraindications for MRI.

A total of 11 subjects were excluded. Six subjects were excluded prior to fMRI analyses: three

subjects for chance performance (<0.6 by the end of the training phase and/or <0.6 for trained items

in the final test), one subject for excessive motion (>1.5 mm within multiple runs), and two subjects

for failure to complete all phases. An additional five subjects were excluded for high correlation

between fMRI regressors that precluded model-based fMRI analyses of the first or second half of

learning phase: three subjects had r > 0.9 for prototype and exemplar regressors and two subjects

had a rank deficient design matrix driven by a lack of trial-by-trial variability in the exemplar predic-

tor. In all five participants, attentional weight parameter estimates from both models indicated that

most stimulus dimensions were ignored, which in some cases may lead to a lack of variability in

model fits. This left 29 subjects (age: M = 21.9 years, SD = 3.3 years, range 18–30 years; 19 females)

reported in all analyses. Additionally, we excluded single runs from three subjects who had excessive

motion limited to that single run.

Materials
Stimuli consisted of cartoon animals that differed on eight binary features: neck (short vs. long), tail

(straight vs. curled), foot shape (claws vs. round), snout (rounded vs. pig), head (ears vs. antennae),

color (purple vs. red), body shape (angled vs. round), and design on the body (polka dots vs. stripes)

(Bozoki et al., 2006; Zeithamova et al., 2008; available for download osf.io/8bph2). The two possi-

ble versions of all features can be seen across the two prototypes shown in Figure 1C. For each par-

ticipant, the stimulus that served as the prototype of category A was randomly selected from four

possible stimuli and all other stimuli were re-coded in reference to that prototype. The stimulus that

shared no features with the category A prototype served as the category B prototype. Physical dis-

tance between any pair of stimuli was defined by their number of differing features. Category A

stimuli were those that shared more features with the category A prototype than the category B pro-

totype. Category B stimuli were those that shared more features with the category B prototype than

the category A prototype. Stimuli equidistant from the two prototypes were not used in the study.

Training set
The training set included four stimuli per category, each differing from their category prototype by

two features (see Table 2 for training set structure). The general structure of the training set with

regard to the category prototypes was the same across subjects, but the exact stimuli differed based

on the prototypes selected for a given participant. The training set structure was selected to gener-

ate many pairs of training items that were four features apart both within the same category and
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across the two categories. This design ensured that categories could not be learned via unsuper-

vised clustering based on similarity of exemplars alone.

Interim test sets
Stimuli in the interim generalization tests included 22 unique stimuli: the eight training stimuli, both

prototypes, and two new stimuli at each distance (1, 2, 3, 5, 6, 7) from the category A prototype.

Distance 1, 2 and 3 items were scored as correct when participant labeled them as category A mem-

bers. Items at the distance 5, 6 and 7 from the category A prototype (thus distance 3, 2, and one

from the B prototype) were scored as correct when participant labeled them as category B mem-

bers. While new unique distance 1–3, 5–7 items were selected for each interim test set, the old train-

ing stimuli and the prototypes were necessarily the same for each test.

Final test set
Stimuli in the final test included 58 unique stimuli. Forty-eight of those consisted of 8 new stimuli

selected at each distance 1–3, 5–7 from the category A prototype, each presented once during the

final test. These new items were distinct from those used in either the training set or the interim test

sets with the exception of the items that differed by only one feature from their respective proto-

types. Because there are only 8 distance one items for each prototype, they were all used as part of

the interim test sets before being used again in the final test set. The final test also included the

eight training stimuli and the two prototypes, each presented twice in this phase (Bowman and Zei-

thamova, 2018; Kéri et al., 2001; Smith et al., 2008). The stimulus structure enabled dissociable

behavioral predictions from the two models. While stimuli near the prototypes also tend to be near

old exemplars, the correlation is imperfect. For example, when attention is equally distributed across

features, the prototype model would make the same response probability prediction for all distance

three items. However, some of those distance three items were near an old exemplar while others

were farther from all old exemplars, creating distinct exemplar model predictions. Because we varied

the test stimuli to include all distances from the prototypes, and because within each distance to the

prototype there was variability in how far the stimuli are from the old exemplars, the structure was

set up to facilitate dissociation between the model predictions.

Experimental design
The study consisted of two sessions: one session of neuropsychological testing and one experimen-

tal session. Only results from the experimental session are reported in the present manuscript. In the

experimental session, subjects underwent four cycles of observational study and interim generaliza-

tion tests (Figure 1D), followed by a final generalization test (Figure 1E), all while undergoing fMRI.

In each run of observational study, participants were shown individual animals on the screen with

a species label (Febbles and Badoons) and were told to try to figure out what makes some animals

Febbles and others Badoons without making any overt responses. Each stimulus was presented on

Table 2. Dimension values for example prototypes and training stimuli from each category.

Dimension values

Stimulus 1 2 3 4 5 6 7 8

Prototype A 1 1 1 1 1 1 1 1

A1 1 1 1 1 1 1 0 0

A2 0 1 1 1 0 1 1 1

A3 1 0 1 0 1 1 1 1

A4 1 1 0 1 1 0 1 1

Prototype B 0 0 0 0 0 0 0 0

B1 0 0 0 0 0 0 1 1

B2 1 0 0 0 1 0 0 0

B3 0 1 0 1 0 0 0 0

B4 0 0 1 0 0 1 0 0
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the screen for 5 s followed by a 7 s ITI. Within each study run, participants viewed the training exam-

ples three times in a random order. After two study runs, participants completed an interim generali-

zation test. Participants were shown cartoon animals without their labels and classified them into the

two species without feedback. Each test stimulus was presented for 5 s during which time they could

make their response, followed by a 7 s ITI. After four study-test cycles, participants completed a final

categorization test, split across four runs. As in the interim tests, participants were asked to catego-

rize animals into one of two imaginary species (Febbles and Badoons) using the same button press

while the stimulus was on the screen. Following the MRI session, subjects were asked about the

strategies they used to learn the categories, if any, and then indicated which version of each feature

they thought was most typical for each category. Lastly, subjects were verbally debriefed about the

study.

fMRI Data Acquisition
Raw MRI data are available for download via OpenNeuro (openneuro.org/datasets/ds002813). Scan-

ning was completed on a 3T Siemens MAGNETOM Skyra scanner at the University of Oregon Lewis

Center for Neuroimaging using a 32-channel head coil. Head motion was minimized using foam pad-

ding. The scanning session started with a localizer scan followed by a standard high-resolution T1-

weighted MPRAGE anatomical image (TR 2500 ms; TE 3.43 ms; TI 1100 ms; flip angle 7˚; matrix size

256 256; 176 contiguous slices; FOV 256 mm; slice thickness 1 mm; voxel size 1.0 1.0 1.0 mm;

GRAPPA factor 2). Then, a custom anatomical T2 coronal image (TR 13,520 ms; TE 88 ms; flip angle

150˚; matrix size 512 512; 65 contiguous slices oriented perpendicularly to the main axis of the hip-

pocampus; interleaved acquisition; FOV 220 mm; voxel size 0.4 0.4 2 mm; GRAPPA factor 2) was col-

lected. This was followed by 16 functional runs using a multiband gradient echo pulse sequence [TR

2000 ms; TE 26 ms; flip angle 90˚; matrix size 100 100; 72 contiguous slices oriented 15˚ off the ante-

rior commissure–posterior commissure line to reduced prefrontal signal dropout; interleaved acquisi-

tion; FOV 200 mm; voxel size 2.0 2.0 2.0 mm; generalized autocalibrating partially parallel

acquisitions (GRAPPA) factor 2]. One hundred and forty-five volumes were collected for each obser-

vational study run, 133 volumes for each interim test run, and 103 volumes for each final test run.

Behavioral accuracies
Interim tests
To assess changes in generalization accuracy across train-test cycles, we computed a 4 (interim test

run: 1–4) x 4 (distance: 0–3) repeated-measures ANOVA on accuracy for new items only. We were

particularly interested in linear effects of interim test run and distance. We also tested whether there

was a difference across training in accuracy for the training items themselves versus new items at the

same distance from their prototypes, which can index how much participants learn about specific

items above-and-beyond what would be expected based on their typicality. We thus computed a 4

(interim test run: 1–4) x 2 (item type: training, new) repeated-measures ANOVA on accuracies for

distance two items.

Final test
First, to assess the effect of item typicality, classification performance in the final test (collapsed

across runs) was assessed by computing a one-way, repeated-measures ANOVA across new items at

distances (0–3) from either prototype. Second, we assessed whether there was an old-item advan-

tage by comparing accuracy for training items and new items of equal distance from prototypes (dis-

tance 2) using a paired-samples t-test. For all analyses (including fMRI analyses described below), a

Greenhouse-Geisser correction was applied whenever the assumption of sphericity was violated as

denoted by ‘GG’ in the results.

Prototype and exemplar model fitting
As no responses were made during the study runs, prototype and exemplar models were only fit to

test runs – interim and final tests. As the number of trials in each interim test was kept low to mini-

mize exposure to non-training items during the learning phase, we concatenated across interim tests

1 and 2 and across interim tests 3 and 4 to obtain more robust model fit estimates for the first half
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vs. second half of the learning phase. Model fits for the final test were computed across all four runs

combined. Each model was fit to trial-by-trial data in individual participants.

Prototype similarity
As in prior studies (Bowman and Zeithamova, 2018; Maddox et al., 2011; Minda and Smith,

2001), the similarity of each test stimulus to each prototype was computed, assuming that percep-

tual similarity is an exponential decay function of physical similarity (Shepard, 1957), and taking into

account potential differences in attention to individual features. Formally, similarity between the test

stimulus and the prototypes was computed as follows:

SA xð Þ ¼ exp �c
X

m

i¼1

wijxi � protoAij
rð Þ

1=r

" #

; (1)

where SA xð Þ is the similarity of item x to category A, xi represents the value of the item x on the ith

dimension of its m binary dimensions (m = 8 in this study), protoA is the prototype of category A, r is

the distance metric (fixed at one for the city-block metric for the binary dimension stimuli). Parame-

ters that were estimated from each participant’s pattern of behavioral responses were w (a vector

with eight weights, one for each of the eight stimulus features and constrained to sum to 1) and c

(sensitivity: the rate at which similarity declines with physical distance, constrained to be 0–100).

Exemplar similarity
Exemplar models assume that categories are represented by their individual exemplars, and that

test items are classified into the category with the highest summed similarity across category exem-

plars (Figure 1A). As in the prototype model, a nonlinear exponential decay function is used to

transform physical similarity into subjective similarity, based on research on how perceived similarity

relates to physical similarity (Shepard, 1957). Using a nonlinear function has the effect of weighting

the most similar exemplars more heavily than the least similar exemplars, as the similarity value for

two items that are physically one feature apart will be more than twice the similarity value of two

items that are two features apart. Using the sum of similarity across all exemplars within a category

provides an opportunity for multiple highly similar exemplars to be considered in making decisions,

which allows the model to generate different predictions when there is a single close exemplar ver-

sus when there are multiple close exemplars. Together, this means that the most similar training

exemplars drive the summed similarity metric but there is still differentiation in the predictions

informed by other exemplars beyond the closest exemplar. This is canonically how an item’s similar-

ity to each category is computed in exemplar models (Nosofsky, 1987; Zaki et al., 2003).Formally,

similarity of each test stimulus to the exemplars of each category was computed as follows:

SA xð Þ ¼
y2A

X

exp �c
X

m

i¼1

wijxi� yij
rð Þ

1=r

" #

(2)

where y represents the individual training stimuli from category A, and the remaining notation and

parameters are as in Equation 1.

Parameter estimation
For both models, the probability of assigning a stimulus x to category A is equal to the similarity to

category A divided by the summed similarity to categories A and B, formally, as follows:

PðAjxÞ ¼
SAðxÞ

SAðxÞþ SBðxÞ
(3)

Using these equations, the best fitting w1-8 (attention to each feature) and c (sensitivity) parame-

ters were estimated from the behavioral data of each participant, separately for the first half of the

learning phase, second half of the learning phase, and the final test, and separately for the proto-

type and exemplar models. To estimate these parameters for a given model, the trial-by-trial predic-

tions generated by Equation 3 were compared with the participant’s actual series of responses, and

model parameters were tuned to minimize the difference between predicted and observed
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responses. An error metric (negative log likelihood of the entire string of responses) was computed

for each model by summing the negative of log-transformed probabilities, and this value was mini-

mized by adjusting w and c using standard maximum likelihood methods, implemented in MATLAB

(Mathworks, Natick, MA), using the ‘fminsearch’ function.

Group analyses
After optimization, we computed a 2 (model: prototype, exemplar) x 2 (learning phase half: 1st, 2nd)

repeated-measures ANOVA on the model fit values (i.e., negative log likelihood) to determine which

model provided a better fit to behavioral responses at the group level and if there were shifts across

learning in which model fit best. We used a paired-samples t-test comparing model fits during the

final test to determine whether the group as a whole was better fit by the prototype or exemplar

model by the end of the experiment.

We also tested whether individual subjects were reliably better fit by one model or the other

using a permutation analysis. For each subject in each phase of the experiment, we created a null

distribution of model fits by shuffling the order of stimuli associated with the subject’s actual string

of responses, then fitting the prototype and exemplar models to this randomized set of response –

stimulus mappings. We repeated this process 10,000 times for each subject in each phase. We first

confirmed that the actual prototype and exemplar model fits were reliably better than would be

expected if subjects were responding randomly by comparing these real fits to the null distribution

of prototype and exemplar model fits (alpha = 0.05, one-tailed). Indeed, both the prototype and

exemplar models fit reliably better than chance for all subjects in all phases of the experiment. Next,

we tested whether one model reliably outperformed the other model by taking the difference in

model fits generated by the permutation analysis. We then compared the observed difference in

model fits to the null distribution of model fit differences and determined whether the observed dif-

ference appeared with a frequency of less than 5% (alpha = 0.05, two-tailed). Using this procedure,

we labeled each subject as having used a prototype strategy, exemplar strategy, or having fits that

did not differ reliably from one another (‘similar’ model fits) for each phase of the experiment.

fMRI Preprocessing
The raw data were converted from dicom files to nifti files using the dcm2niix function from MRIcron

(https://www.nitrc.org/projects/mricron). Functional images were skull-stripped using BET (Brain

Extraction Tool), which is part of FSL (http://www.fmrib.ox.ac.uk/fsl). Within-run motion correction

was computed using MCFLIRT in FSL to realign each volume to the middle volume of the run.

Across-run motion correction was then computed using ANTS (Advanced Normalization Tools) by

registering the first volume of each run to the first volume of the first functional run (i.e., the first

training run). Each computed transformation was then applied to all volumes in the corresponding

run. Brain-extracted and motion-corrected images from each run were entered into the FEAT (fMRI

Expert Analysis Tool) in FSL for high-pass temporal filtering (100 s) and spatial smoothing (4 mm

FWHM kernel).

Regions of interest
Regions of interest (ROIs, Figure 2) were defined anatomically in individual participants’ native space

using the cortical parcellation and subcortical segmentation from Freesurfer version 6 (https://surfer.

nmr.mgh.harvard.edu/) and collapsed across hemispheres to create bilateral masks. Past research

has indicated that there may be a functional gradient along the hippocampal long axis, with

detailed, find-grained representations in the posterior hippocampus and increasingly coarse, gener-

alized representations proceeding toward the anterior hippocampus (Brunec et al., 2018;

Frank et al., 2019; Poppenk et al., 2013). As such, we divided the hippocampal ROI into anterior/

posterior portions at the middle slice. When a participant had an odd number of hippocampal slices,

the middle slice was assigned to the posterior hippocampus. Based on our prior report

(Bowman and Zeithamova, 2018), we expected the anterior portion of the hippocampus to track

prototype predictors, together with VMPFC (medial orbitofrontal label in Freesurfer). Based on the

prior study by Mack et al., 2013, we expected lateral occipital cortex, inferior frontal gyrus (combi-

nation of pars opercularis, pars orbitalis, and pars triangularis freesurfer labels), and lateral parietal

cortex (combination of inferior parietal and superior parietal freesurfer labels) to track exemplar
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predictors. The posterior hippocampus was also included as an ROI, to test for an anterior/posterior

dissociation within the hippocampus. While one might expect the posterior hippocampus to track

exemplar predictors based on the aforementioned functional gradient, our prior report

Bowman and Zeithamova, 2018 found only a numeric trend in this direction and Mack et al., 2013

did not report any hippocampal findings despite significant exemplar correlates found in the cortex.

Thus, we did not have strong predictions regarding the posterior hippocampus, other than being

distinct from the anterior hippocampus.

Model-based fMRI analyses
fMRI data were modeled using the GLM. Three task-based regressors were included in the GLM:

one for all trial onsets, one that included modulation for each trial by prototype model predictions,

and one that included modulation for each trial by exemplar model predictions. Events were mod-

eled with a duration of 5 s, which was the fixed length of the stimulus presentation. Onsets were

then convolved with the canonical hemodynamic response function as implemented in in FSL (a

gamma function with a phase of 0 s, and SD of 3 s, and a mean lag time of 6 s). The six standard

timepoint-by-timepoint motion parameters were included as regressors of no interest.

The regressor for all trial onsets was included to account for activation that is associated with per-

forming a categorization task generally, but does not track either model specifically. The modulation

values for each model were computed as the summed similarity across category A and category B

(denominator of Equation 3) generated by the assumptions of each model (from Equations 1 and

2). This summed similarity metric indexes how similar the current item is to the existing category rep-

resentations as a whole (regardless of which category it is closer to) and has been used by prior stud-

ies to identify regions that contain such category representations (Bowman and Zeithamova, 2018;

Davis and Poldrack, 2014; Mack et al., 2013). Correlations between prototype and exemplar

summed similarity values ranged from r = �0.73 to. 82 for included subjects, with a mean of abso-

lute values of r = 0.32. A vast majority (80%) of included runs had prototype and exemplar correla-

tions between +/-. 5. To account for any shared variance between the regressors, we included both

model predictors in the same GLM. We verified that the pattern of results remained the same when

analyses are limited to participants with absolute correlations r < 0.5 in all runs, with most correla-

tions being quite small.

For region of interest analyses, we obtained an estimate of how much the BOLD signal in each

region tracked each model predictor by dividing the mean ROI parameter estimate by the standard

deviation of parameter estimates (i.e., computing an effect size measure). Normalizing the beta val-

ues by their error of the estimate de-weighs values associated with large uncertainty, similar to how

lower level estimates are used in group analyses as implemented in FSL (Smith et al., 2004). These

normalized beta values were then averaged across the appropriate runs (interim tests 1–2, interim

tests 3–4, all four runs of the final test) and submitted to group analyses.

We tested whether prototype and exemplar correlates emerged across different regions and/or

at different points during the learning phase. To do so, we computed a 2 (model: prototype, exem-

plar) x 2 (learning phase: 1st half, 2nd half) x 6 (ROI: VMPFC, anterior hippocampus, posterior hippo-

campus, lateral occipital, lateral prefrontal, and lateral parietal cortices) repeated-measures ANOVA

on parameter estimates from the interim test runs. We were interested in a potential model x ROI

interaction effect, indicating differences across brain regions in the type of category information rep-

resented. Following any significant interaction effect, we computed one-sample t-tests to determine

whether each region significantly tracked a given model and paired-samples t-tests to determine

whether the region tracked one model reliably better than the other. Given a priori expectations

about the nature of these effects, we computed one-tailed tests only on the effects of interest: for

example, in hypothesized prototype-tracking ROIs (anterior hippocampus and VMPFC), we com-

puted one-sample t-tests to compare prototype effects to zero and a paired-samples t-test to test

whether the prototype correlates were stronger than exemplar correlates. We followed a similar pro-

cedure in hypothesized exemplar-tracking ROIs (inferior frontal gyrus, lateral parietal cortex, lateral

occipital cortex). We were also interested in potential interactions with the learning phase, which

would indicate shift across learning in category representations. Following any such interaction, fol-

low-up ANOVAs or t-tests were performed to better understand drivers of the effect.

We next tested ROI differences in the final generalization phase. To do so, we computed a 2

(model: prototype, exemplar) x 6 (ROI: see above) repeated-measures ANOVA on parameter
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estimates from the final generalization test. We were particularly interested in the model x ROI inter-

action effect, which would indicate that regions differ in which model they tracked. Because each

participant’s neural model fit is inherently dependent on their behavioral model fit, we focused on

group-average analyses and did not perform any brain-behavior individual differences analyses.
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recurrence within the hippocampal system supports integration of information across episodes. Neuron 99:
1342–1354. DOI: https://doi.org/10.1016/j.neuron.2018.08.009, PMID: 30236285

Kruschke JK. 1992. ALCOVE: an exemplar-based connectionist model of category learning. Psychological
Review 99:22–44. DOI: https://doi.org/10.1037/0033-295X.99.1.22, PMID: 1546117

Kuhl BA, Dudukovic NM, Kahn I, Wagner AD. 2007. Decreased demands on cognitive control reveal the neural
processing benefits of forgetting. Nature Neuroscience 10:908–914. DOI: https://doi.org/10.1038/nn1918,
PMID: 17558403

Kuhl BA, Chun MM. 2014. Successful remembering elicits event-specific activity patterns in lateral parietal cortex.
Journal of Neuroscience 34:8051–8060. DOI: https://doi.org/10.1523/JNEUROSCI.4328-13.2014, PMID: 24
899726
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